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1000 Ljubljana, Slovenia; bogdan.stefane@fkkt.uni-lj.si (B.Š.); Helena.Brodnik@fkkt.uni-lj.si (H.B.)

4 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
* Correspondence: anton.gradisek@ijs.si; Tel.: +386-1-477-3967

Received: 22 October 2019; Accepted: 25 November 2019; Published: 27 November 2019 ����������
�������

Abstract: We used a 16-channel e-nose demonstrator based on micro-capacitive sensors with
functionalized surfaces to measure the response of 30 different sensors to the vapours from 11 different
substances, including the explosives 1,3,5-trinitro-1,3,5-triazinane (RDX), 1-methyl-2,4-dinitrobenzene
(DNT) and 2-methyl-1,3,5-trinitrobenzene (TNT). A classification model was developed using the
Random Forest machine-learning algorithm and trained the models on a set of signals, where the
concentration and flow of a selected single vapour were varied independently. It is demonstrated
that our classification models are successful in recognizing the signal pattern of different sets of
substances. An excellent accuracy of 96% was achieved for identifying the explosives from among
the other substances. These experiments clearly demonstrate that the silane monolayers used in our
sensors as receptor layers are particularly well suited to selecting and recognizing TNT and similar
types of explosives from among other substances.

Keywords: artificial nose; e-nose; electronic nose; detection of explosives; chemical selectivity of e-nose;
arrays of sensors; machine learning and sensor arrays

1. Introduction

The past couple of years have seen an increase in the amount of research on artificial noses
for detecting targeted substances in the atmosphere. While the first generations of sensors were
optimized to respond to a particular substance and were designed to detect it within a certain
concentration range, sensor sensitivity is not a major problem anymore. But because these sensors
can have the same electrical response to many different targeted substances, the necessary chemical
selectivity can be hard to achieve. Therefore, research is now shifting towards arrays of an increasing
number of sensors that are able to distinguish between a series of different substances in various
concentration ranges, as a dog’s nose would. The design of a sensor array depends on the application,
for example, [1] industrial chemicals, such as pollutants, volatile organic compounds, or explosives [2],
or compounds used in environmental monitoring. Often, the applications are in the food and beverage
industry [3,4], for detecting fruit aromas or determining the ripening status [5,6], controlling the quality
of vegetable oil [7,8], classifying different types of wines [9] or teas [10] and in detecting spoilage due to

Sensors 2019, 19, 5207; doi:10.3390/s19235207 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6480-9587
https://orcid.org/0000-0002-1544-2595
https://orcid.org/0000-0002-3277-6503
https://orcid.org/0000-0002-8709-9853
https://orcid.org/0000-0001-5737-1150
http://www.mdpi.com/1424-8220/19/23/5207?type=check_update&version=1
http://dx.doi.org/10.3390/s19235207
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5207 2 of 15

microbiological contamination [11]. Applications in the field of medicine have been explored as well,
for example, in analysing breath [12] or detecting the volatile organic compounds produced by bacteria
in infected wounds [13]. There are a variety of technologies used in artificial noses. Some of the most
common sensors are based on metal oxide semiconductors (MOS), while other types use conducting
polymers or employ approaches from optics, mass spectrometry, gas chromatography, or combinations
of techniques [4]. For several applications in food chemistry, a small number of highly sensitive sensors
is already sufficient, as we can deduce the state of the sample based on the presence of a small number
of compounds [4]. However, the fundamental question remains, whether a more general system can
be built, one that truly mimics a dog’s nose. The long-term vision is an array of thousands of different
sensors, integrated onto a single chip, similar to image sensors. Such a system with many sensors
that selectively respond to different substances would make the detection of a wider set of substances
possible. In addition, such a system would allow us to simultaneously test several different surface
modifications, which would mean the faster optimization of an e-nose with a small number of sensors
for specific applications. It is important to note that the present system of surface-functionalized
micro-capacitors allows for a wide variety of organic receptor molecules to be designed for specific
sensing applications.

To date, the number of different sensors in an array is small. The maximum number of different
sensors reported in the literature is 18 semiconductor sensors installed in a commercially available
e-nose [10] or 34 in an experimental setup [13]. We have built a 16-channel e-nose demonstrator [2]
for use in this study. The number of sensors in existing e-noses is small compared to the millions
of sensing cells in a dog’s nose. But while increasing the number of sensors is a plausible task and
a large number of sensors could be integrated on a chip, similar to CMOS chips for imaging, the real
problem is handling, analysing and interpreting the huge amounts of data that are generated from
such a sensor array.

Due to the complexity of a sensor array’s output, one option to handle the data is the use of artificial
intelligence (AI). The past couple of decades have witnessed remarkable advances in the capabilities of
AI to manage large amounts of data in very different scientific fields. AI is successfully used where
“big data” is generated, such as in particle physics, astronomy, molecular biology and medicine.

In order to properly interpret the “signal” from a multisensory array, careful data analysis is
required. Often, machine-learning methods are employed to help with this task. Typically, the analysis
consists of data pre-processing, feature extraction, building classification models, and decision making,
which means classifying the input to the correct class. As the sensory system is aimed to tackle
a particular task, the methods have to be optimized for the domain in question. Data pre-processing
usually removes the corrupted data, filters, segments, and assigns classes to the segments. Feature
extraction aims to extract robust information from the sensors’ responses, with common features being
the average signal differences, the relative differences, or the different types of array normalizations [14].
The classification methods can be seen as unsupervised and supervised. Unsupervised methods
work on data that have not been labelled and aim to identify commonalities. They usually work
by building clusters of data based on the statistical properties. A commonly used technique with
unsupervised methods is principal component analysis (PCA) [15]. On the other hand, supervised
methods require both a training dataset, upon which the model is built, as well as a testing set, upon
which it is evaluated. Here, both sets are labelled, meaning that the samples are assigned to chosen
classes (such as individual chemical compounds). Some successful methods applied to electronic noses
include support vector machines (SVMs) [5,12], different types of neural networks [9,12,16], as well
as different methods based on decision trees. Overall, machine-learning methods usually perform
well when assisting with the classification of sensor inputs. Some other algorithm-related tasks with
electronic noses include the compensation of sensor drift, an intrinsic feature of the sensor that appears
with time [17], developing approaches to incrementally add classes to the model without having to
retrain it for each new class [18] and knowledge transfer between similar sensors [19].
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The goal of this study is to apply the methods of artificial intelligence to an existing e-nose
demonstrator, which is described in our earlier publication [2]. There are 16 different pairs of sensors in
this demonstrator, which are differently chemically surface-functionalized, thereby providing different
electrical responses to different vapours. We selected 11 different target substances, which are presented
in Table 1. With many sensors and many different compounds, we want to see which sensors or sensor
combinations are appropriate for particular compounds.

Our approach is to measure the response of each sensor in the array to each targeted substance
at different concentrations of vapours and different flow rates, which allows us to gather more data
on a single substance in a controlled manner. As a result, we obtain a 2D array of responses for
each sensor at different concentrations and flow rates for each targeted substance. For each sensor,
this amounts to 50 different responses (all functions of time) for every selected substance. From the
stored functional responses, we assign characteristic parameters, e.g., the amplitude of a response
for a certain combination of flow rate and concentration, which is a single number. These numbers
are then organized into a matrix that is presented with a so-called “heat map”. Such maps give
a very informative overview of the response of a certain sensor to a selected substance. As our
demonstrator has 16 channels, we obtain 16 such matrices for every substance with 16 × 50 = 800
numbers characterizing the response of the sensor array to that substance.

It has been previously demonstrated that many of the sensors in our demonstrator system react to
various substances in a different way; however, several sensors also show a response to more than one
substance, which makes the interpretation of the signals non-trivial. Since we are dealing with a new
type of sensor, we only use AI methods that are easy to interpret in order to understand which features
are the most relevant to differentiating between individual substances. In this paper we explore the
use of the Random Forest machine-learning algorithm to distinguish the array responses to different
substances. After the algorithm is trained on a set of acquired signals, the question is how well the
algorithm recognizes newly acquired signals from one of the substances of the set. At this point we
are only interested in identifying individual, “pure” substances, with future work planned to look at
mixtures of different vapours.

2. Materials and Methods

2.1. Array of Sensors

An array of 16 micro-capacitive sensors that were chemically functionalized using different
receptor molecules was used [2]. Each sensor is actually a chip, which has a pair of identical, planar,
comb-like micro-capacitors with inter-digitated electrodes made of a thin layer of silicon dioxide.
Each micro-capacitor has outer dimensions of 350 µm× 300 µm and has 51 fingers, each finger is 300 µm
long. The electrodes are made of polysilicon and are 1.5 µm apart and 2.5 µm high. The conductive
polysilicon is covered with an approximately 10-nm-thick layer of SiO2. This layer provides for the
good chemical binding of different organic molecules, which serve as a thin receptor layer to attract
targeted molecules in the surrounding atmosphere and bind them to the surface. This surface layer
of attracted molecules changes the capacitance of the sensor, which is detected by our electronic
circuit. After the chip and the pair of micro-capacitors is surface functionalized with different receptor
molecules, the receptor layer of one of the micro-capacitors is removed using high-intensity Ar+ laser
illumination. This illumination produces a high surface temperature and the illuminated receptor layer
loses its ability to preferentially attract targeted molecules to that surface. In this way the pair becomes
chemically different and the preferential adsorption of the targeted molecules on one sensor causes
an imbalance in the capacity of the two sensors. This imbalance is then detected as the signal from
each sensor pair.

The surfaces of the 15 sensors used in this system were modified with six different silanes:
(1) 3-aminopropyl) trimethoxysilane (APTMS), (2) p-aminophenyltrimethoxysilane (APhS), (3) 1-[3-
(trimethoxysilyl)propyl] urea (UPS), (4) N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (EDA),
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(5) N,N-dimethylaminopropyl)trimethoxysilane (DMS) and (6) octadecyltrimethoxysilane (ODS).
After the comb-like micro-capacitors were coated with a specific silane, one of the micro-capacitors
in each pair was irradiated with a high-power laser beam to modify the properties of the organic
layer. In many cases this irradiated sensor showed different responses than the non-treated and was
considered as an independent sensor in our measurements. This means that we actually had 30
different sensors operating in our e-nose demonstrator. The processes of surface modification by these
organic molecules and the characterization of the surfaces is comprehensively described in Ref. [2].

2.2. 16 Channel e-Nose Demonstrator

A block diagram of the 16-channel e-nose demonstrator for vapour-trace detection is presented in
Figure 1a. It is composed of 16 differently modified comb capacitive sensors connected to an ASIC with
detection electronics. One channel of detection electronics can serve a maximum of four differential
sensors. In this experiment we used only two sensors in one channel of electronics. The result of the
capacitance-difference measurement of each sensor is A/D converted and further processed in the
FPGA [2]. The last, 16th channel serves for the temperature and humidity measurements. The results
are sent to a PC for further processing, storage, eventual display and further signal processing using
the methods of machine learning, as described here. The physical implementation of the 16-channel
e-nose demonstrator is presented in Figure 1b, while its building blocks are presented in Figure 1c,d.
The technical details of the demonstrator are explained in the references [2,20,21].
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Figure 1. 16-channel e-nose demonstrator based on micro-capacitors. (a) Block diagram of the 16-
channel e-nose. (b) Physical implementation of the e-nose. (c) Holder for individual sensor PCBs, 
which is made of thin sheets of low-temperature ceramics, stacked together to form a 3D structure 
with voids and channels where the air is pumped through. (d) SEM image of a single chip with two 
comb micro-capacitors, (e) System in package, (f) Layout of the ASIC. 

Figure 2 shows a PC interface screen of the 16-channel e-nose demonstrator, where the response 
of each sensor can be plotted vs. time at a rate of 100 points/minute. At the same time, each sensor’s 
response is analysed and plotted as a coloured square with a colour corresponding to the magnitude 
of the response. In this way a matrix of coloured squares is presented, as shown on the bottom-left 
part of Figure 2, which is helpful for monitoring and comparing the responses of different sensors. In 
the figure all the squares are green because no thresholds for the measured signal have been defined. 

Figure 1. 16-channel e-nose demonstrator based on micro-capacitors. (a) Block diagram of the 16-channel
e-nose. (b) Physical implementation of the e-nose. (c) Holder for individual sensor PCBs, which is made of
thin sheets of low-temperature ceramics, stacked together to form a 3D structure with voids and channels
where the air is pumped through. (d) SEM image of a single chip with two comb micro-capacitors, (e) System
in package, (f) Layout of the ASIC.

Figure 2 shows a PC interface screen of the 16-channel e-nose demonstrator, where the response
of each sensor can be plotted vs. time at a rate of 100 points/minute. At the same time, each sensor’s
response is analysed and plotted as a coloured square with a colour corresponding to the magnitude of
the response. In this way a matrix of coloured squares is presented, as shown on the bottom-left part
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of Figure 2, which is helpful for monitoring and comparing the responses of different sensors. In the
figure all the squares are green because no thresholds for the measured signal have been defined.Sensors 2019, 19, x FOR PEER REVIEW 5 of 15 
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2.3. Generator of Vapours and Measuring Protocols

To measure the response of the 16-channel e-nose demonstrator to different vapours we need
different vapours with adjustable and calibrated concentrations for each vapour. We have previously
published detailed studies of a reliable generator of vapours for different explosives; this is an important
instrument for the development of e-noses [2,20,21]. We used two different vapour generators in this
study. For explosives, the setup for generating particular concentrations of molecules of different
explosives in the N2 carrier gas is based on the flow of N2 through containers with finely dispersed
explosives on a fibre carrier, which provides a large surface area of explosive material [2,20,21]. For the
remaining substances, gas samples of high purity were prepared commercially by mixing the target
substance with nitrogen gas to a selected concentration. These were further mixed with additional
N2 carrier gas to lower the concentration to the required value at a certain total flow and fed into the
measuring system. It was noticed in our experiments that humidity fluctuations in the laboratory
significantly influenced the sensors’ responses. For this reason, the e-nose demonstrator was enclosed
in a metal tube, which had an overpressure of N2 to minimise any diffusion of water into the system,
thereby providing a stable environment. To prevent water diffusing through the exhaust tube, a long
exhaust tube with a drying stage and a pump were used.

2.4. Data Acquisition

In total, 11 different chemical substances were used for the measurements, as listed in Table 1.
All the targeted substances were detected in their vapour phase, which was a mixture of known
concentrations of molecules of the targeted substance and the carrier gas. Very pure N2 was as the
carrier gas because it is inert and does not interact with the sensors.

For each target substance, we varied both the concentration of the substance and the gas flow
during the measurements to increase the diversity of the available dataset in a controlled manner.
The concentration was varied by changing the ratio of the sample-containing gas and the pure nitrogen
gas, ranging from 10% (one part of sample-containing gas and nine parts of pure nitrogen) to 100%
(sample-containing gas only) in steps of 10%. The total gas flows ranged from 5 to 25 mL/min in steps of
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5 mL/min and in all cases we observed that the amplitude of the sensors’ responses after a selected time
period seemed to depend on the flow rate. The simplest explanation for this behaviour is that small
flow rates do not allow the specified concentration to be reached in the pre-set time interval, resulting
in a smaller concentration at individual sensor sites and therefore smaller responses. Nevertheless,
the use of different flow rates gives us a way to gather more data in a controlled manner. Based on our
observations, we only used data gathered at higher flow rates in our final analyses.

For a given concentration and flow rate the measurement started by flushing the sensor array
with pure N2 for 5 min, in the case of explosives, and 3 min, in the case of the other substances. This is
a “cleaning cycle”, or the “off” cycle, where the remaining molecules, adsorbed on the surfaces of the
micro-capacitive sensors and inside the connecting tubes, were removed by the N2. Then, the gas with
a chosen concentration flowed through the sensor array for 3 or 5 min, depending on the substance.
This is the “on” cycle, which together with the “off” cycle, form a complete cycle. This cycle was
repeated 10 times. Afterwards, the array was flushed with nitrogen and the measurement continued
for a different combination of flow and concentration.

In order to avoid possible bias due to the slowly shifting background from the water molecules
present in the sensor system due to their diffusion from the environment, the combinations of
concentration and flow were chosen in a random sequence instead of a gradual one. For explosives,
the entire sequence was repeated several times. In addition, subsequent measurements took place after
a few weeks or even months. On the other hand, due to the limited number of gas mixtures, the gas
samples were measured only once, in some cases with a smaller number of combinations.

Table 1. List of substances and their concentrations used in this study. The concentration is given in
the number of molecules of the substance per one million molecules of N2 carrier gas. The values for
TNT, DNT and RDX are calculated using the vapour pressures [22].

Substance Chemical Formula/Name Concentration
(ppmv) Source

Butane CH3-CH2-CH2-CH3 79,800 Gas cylinder
Methane CH4 999,950 Gas cylinder

Carbon monoxide CO 299 Gas cylinder
Sulphur dioxide SO2 13.2 Gas cylinder

Hydrogen sulphide H2S 94.5 Gas cylinder
Ammonium NH3 200 Gas cylinder

Nitrogen dioxide NO2 15.9 Gas cylinder
Nitric oxide NO 116.3 Gas cylinder

RDX 1,3,5-Trinitro-1,3,5-triazinane 0.00000485 Vapour generator
DNT 1-Methyl-2,4-dinitrobenzene 0.4 Vapour generator
TNT 2-Methyl-1,3,5-trinitrobenzene 0.00915 Vapour generator

2.5. Data Processing and Feature Extraction

Since machine-learning models are usually not built using raw data, such as the recorded
time-dependence of a signal from each micro-capacitive sensor, we first process the data to extract
meaningful information that will help us distinguish between the different substances. A typical
response of an individual sensor from the array for a couple of “on” and “off” states is shown in
Figure 3. When the sensor is exposed to the flow of pure N2, it takes approximately τ ~ 3 min to reach
the steady, “off” state. This time constant τ is determined by the time required for the whole of the
tubing and the chamber(s), where the sensors are mounted, to be filled with pure N2. Should the
system be integrated, the response time would be much shorter.

When the target sample-containing gas is introduced into the chamber where the sensor is
located, the signal increases to a steady value, which we call the “on” state. When the valve with the
sample-containing gas is closed and only pure nitrogen gas flows over the sensor again, the signal
returns to the signal value in the “off” state. The signal value in the “off” state is subjected to long-term
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drifts within the time window of the experiment and has to be set before the measurement begins.
Therefore, at the beginning of the measurements we manually adjust this “off” signal within the
dynamic range of the detecting electronics to prevent saturation effects when the drift drives the signal
to the limits of the electronics.

The difference between the “on” and “off” signals is called the amplitude of the response and is
determined automatically for a stored signal using an appropriate algorithm. From the stored signal,
we create the segments that will be used for building and testing the models in the following way: first,
we take 100 points of baseline immediately before the opening of the valve (i.e., the “off” state) with the
sample-containing gas and the last 100 points of the response to the sample, just before switching back
to pure nitrogen (the “on” state, as indicated in Figure 3). For each sensor and for a single on/off cycle,
this means one row with 200 numbers, and since we have 31 sensors (30 functionalized sensors and
one for humidity), each single-cycle segment matrix will consist of 31 rows with 200 numbers. For each
measurement cycle on a selected sample, covering all the concentrations and all the flows, generates 10
concentrations × 5 flow rates × 10 repetitions, which equals 500 segment matrices. We should note
that the time constant τ related to the transient effects cannot be used to distinguish between different
substances, because in our system τ is primarily determined by the design of the chambers where the
sensors are installed, the length of the tubing used to supply the gas, and the flow rate of the N2 carrier
gas through the sensing head.

The next step is called feature extraction in machine-learning terminology. Each feature is a mathematical
operation upon the segment matrix, which produces a single numerical value and is explained in the
continuation. For each segment matrix, we calculate a series of features. The values are then stored in
a vector that is called an instance. In a machine-learning approach, it is common to generate a large
number of features, especially when it is not immediately clear which features will be the most efficient for
classification. In our case, we calculated the following five features:

• The amplitude for each functionalized sensor (the difference between the “on” and “off” signals,
which makes 30 features in total).

• The noise difference for each sensor. We calculated the RMS noise in the “on” state and subtracted
the RMS noise in the “off” state. This feature is not a “very strong” one, as it is not much different
for different sensors and shows rather random behaviour in the noise heatmaps.

• The flow rate. We use the flow-rate value as a feature as we can determine or set it independently.
At the same time, we keep the concentration as an unknown variable. This choice can be rationalized
if we consider the operation of the algorithm in a real situation with a real demonstrator. If we are
seeking for a specific substance, then we do not know the concentration of that substance in the
measuring air, but we do know the flow rate of the air entering the detector.

• The flow-normalized amplitude, because the amplitude increases with an increasing flow rate.
• The amplitude with the subtracted amplitude of the humidity sensor. This is always a positive

number and will compensate the signal for possible changes to the humidity during the course of
the measurements.

In total, this leaves us with 4 × 30 + 1 (flow is a single feature) = 121 features. In our measurements
each instance is therefore a vector with 121 dimensions.
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Figure 3. Typical section of measured time dependence of a signal for a chosen sensor (black line). Blue
rectangle indicates the last part of the signal in the “off” state (bottom). Red rectangle indicates the last
part (steady state) of the response to the sample in the “on” state (top). Both parts together form one
row in the segment matrix.

2.6. Machine-Learning and Classification

Machine-learning algorithms are used to recognize patterns in large sets of data. Often, various
approaches are tested on the data to assess which performs better in terms of classification accuracy.
In addition, different algorithms differ in terms of the comprehensibility to a human user. We decided
to use the decision-trees algorithm (J48 algorithm), which is simple to understand. The classification
of an instance begins at the root and proceeds along the branches, with each branch corresponding
to a particular feature, until a leaf, corresponding to the class, which in our case is the identified
substance. When building a decision tree on a training data set, features with the highest information
gain are chosen first, being the features that best split the training set into distinct groups. Thus,
inspecting the final decision tree provides us with an insight into which features are the most relevant
for classification. However, when using decision trees, we can find ourselves in danger of overfitting
the tree on the training data set. Random Forest is a further improvement to the decision-tree algorithm,
which is aimed at preventing this and improving the classification accuracy. As the name suggests,
the algorithm builds several decision trees, each of them on a randomly chosen subset of training data
and using a randomly selected subset of features. Each instance in the testing set is then classified
using all the trees in the forest and the final class is the one chosen by most trees.

Other commonly used algorithms are more complex. For example, Support Vector Machines
(SVMs) looks at the data in a multidimensional space, with each dimension corresponding to
a feature, and then searches for a hyperplane that best splits the data. Neural networks, which have
become popular lately, consist of a complex interconnected network of “neurons”, each representing
a mathematical operation on the input data, until the output represents the final class. While often
very efficient, these advanced approaches essentially function as “black boxes”, with the classification
process incomprehensible to human interpretation. As comprehensibility of the models was one of our
main aims, only algorithms based on decision trees were used at this stage.

The classification accuracy of an algorithm is defined as the ratio of true positives (correctly
classified examples, where the criteria is either YES or NO) and all the examples in the test set.
To evaluate the classification accuracy of our algorithm, the data (from here on, we are only working
with the instances) are split into a training set and a testing set. The training set serves for training
the classification algorithm, and the testing set serves for testing the classification accuracy of the
“as-trained algorithm”. To avoid overfitting, the training and testing sets must be distinct and
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uncorrelated. In our study, we obtained several runs of measurements from TNT, DNT and RDX,
sometimes separated by weeks or months, as the vapour generator is essentially a limitless source for
our purpose. Measurements from individual runs were then assigned to one of the sets. For samples
from gas cylinders, due to the small amounts available, the measurements were carried out in a single
run. The first half was assigned to the training and the second to the learning set, which still preserves
sufficient diversity for our purpose.

3. Results

3.1. Responses of Individual Sensors

A very useful method to assess how prominently individual sensors respond to particular
substances is to plot the so-called heat maps, where we plot the amplitudes as a function of flow
and concentration. To reduce the experimental noise, the amplitudes of all 10 repetitions at a single
concentration and flow were averaged for the purpose of the plot. From such plots, we can easily see if
the signal amplitude increases with an increasing flow and/or concentration (which means that the
sensor is useful to detect a particular substance) or does not respond to it, as illustrated in Figure 4 for
the responses to butane. On the other hand, we also notice that some sensors have similar responses to
more than one substance, but not to others, as illustrated in Figure 5. Both figures show the responses
of the sensor 122A-a to butane (top-left image), but (intentionally) from two different measurement
runs, to show the reproducibility of the measurements.
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Figure 4. Signal amplitudes for four sensors in response to butane. The x-axis shows the concentration
of the target substance (here, butane), normalized to the value in Table 1. The y-axis corresponds to
flow rate in units of mL/min. The two sensors 122A-a and 122A-b in top row show good responses.
The amplitude is monotonously increasing with the concentration and the flow rate. The two sensors
143C-b and 162A-a in the bottom row are not responding systematically. Note: individual sensors can
have substantially different responses, which is why the colour scheme is adapted to and is unique to
each heat map for clarity. 122A-b is modified with p-aminophenyl)trimethoxysilane (APhS), 162A-b and
163A-b with octadecyltrimethoxysilane (ODS), 132B-a with 1-[3-(trimethoxysilyl)-propyl]urea (UPS).
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Figure 5. Comparison of responses of sensor 122A-a to butane, TNT, DNT and CO. This sensor shows
a strong systematic response to butane, somehow weaker and noisy, but still a good response to both
TNT and DNT, and a weak and a rather random response to CO.

3.2. Classification Results

As Figures 4 and 5 illustrate, individual sensors often show similar responses to different
substances, while other sensors do not respond. Therefore, manually determining the substance from
readings of 30 sensors is an impossible task, especially when looking only at the data for a single
chosen flow and concentration, and considering the experimental noise. However, we may view the
responses of all 30 sensors to each substance as a unique fingerprint.

Several “experiments” were run on the dataset, with various aims. The dataset was split into
an independent training set, used to build the classification algorithms, and a testing set, used to
evaluate the classification accuracy. Each instance (the vector containing 121 features, corresponding
to each segment, as described above) varied three parameters, i.e., substance, concentration and flow,
while only “substance” was used as a class. The classification accuracy for a chosen algorithm is
defined as the number of correctly classified instances (true positives) divided by the total number of
instances in the testing set. Another relevant metric to consider is the comparison with the “baseline
accuracy” (as if we were randomly classifying each instance), for which we consider the majority class.
This is especially relevant when dealing with datasets where the classes in the testing set are not of the
same size. To illustrate this, if we have five classes of equal size, the “baseline accuracy” is 20%. On the
other hand, when we have two classes with instances in a 7:3 ratio, the baseline accuracy increases to
70%. In our testing data, the number of instances for explosives was typically higher than those for
gases, as the number of gases was limited.

An informative way to look at the classification results is a confusion matrix, which shows the
performance of the algorithm. For example, in Table 2, the first row illustrates the situation for how
well the algorithm classifies butane. The value of an element of the classification matrix does not
represent the probability in the statistical sense. For example, the value of 0.81 in the classification
Table 2 represents the ratio of correctly classified instances for butane. The values in the diagonal
represent the correctly classified instances (correct substances determined by the row name), while
the off-diagonal elements represent misclassifications as the wrong substances (columns). From the
confusion matrix we can learn whether the algorithm works particularly well on some classes or which
are the classes it frequently confuses. The values in the confusion matrix are normalized by rows,
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thus the sums of each row equal 1. The elements of the confusion matrices are presented as follows: the
diagonal elements, which are close to 1, are coloured in green, while the larger off-diagonal elements
are red, for easier interpretation.

In the analysis, we first make some considerations. First, we notice that our sensor array responds
poorly to H2S and SO2, and we therefore exclude them from any further analysis. Second, we notice
from the confusion matrices that the classification algorithms often mix TNT and DNT, since they
have similar sensor responses (as hinted in Figure 5). The likely reason for this is that both molecules
are very similar from the chemical point of view. In the following analysis, we therefore group both
substances into a single class, provisionally called XNT.

We noticed that the instances that become misclassified are most often those measured at low
concentrations and low flows, where the signal amplitudes are consequently lower and more prone to
experimental noise. To build the final classification models, we therefore only kept the part of the data
with the highest concentrations and flows, namely the top-three concentrations and the top-two flows.
In effect, this makes the flow-related features almost irrelevant.

Tables 2 and 3 show confusion matrices for some selected sets of substances to illustrate the
classification results. Table 2 shows the result for seven classes, where we used XNT as a group
containing both TNT and DNT. The overall classification accuracy using the RandomForest algorithm
is 72%, with a baseline accuracy of 27% (if we classify all instances as the class with the largest number
of instances). Inspecting the confusion matrix, we notice that the classification accuracy is better for
some substances than for others. For methane (CH4) and NO, the algorithm classifies correctly more
than 90% of the instances, which is an excellent result. For other substances, the accuracy is lower. For
example, CO is often mistaken for ammonia (NH3), while ammonia itself is in almost a third of the
cases mistaken for XNT.

Table 2. Confusion matrix for seven classes, using the Random Forest algorithm. Red and green colours
are used to highlight some of the most relevant elements.

% Butane CH4 CO XNT NH3 NO NO2
Butane 0.81 0 0.06 0 0.13 0 0

CH4 0.08 0.92 0 0 0 0 0
CO 0 0 0.44 0 0.5 0 0.06

XNT 0 0 0 0.63 0.08 0.08 0.21
NH3 0 0 0 0.31 0.63 0.06 0
NO 0 0 0 0 0.06 0.94 0
NO2 0 0 0 0.38 0.19 0 0.43

In the next step we narrow the number of targeted substances to four, which are very well
distinguished by our demonstrator and algorithm. The confusion matrix for these special cases is
shown in Table 3. Here, the classification accuracy using Random Forest is 92%, with a baseline
accuracy of 43%. Here, all the instances of XNT and NO were classified correctly, while some cases of
CO were classified as butane or NO and 10% of butane instances were classified as XNT.

Table 3. Confusion matrix for four classes, using the Random Forest algorithm.

% Butane CO XNT NO
Butane 0.9 0 0.1 0

CO 0.13 0.8 0 0.04
XNT 0 0 1 0
NO 0 0 0 1

In the third example we look back at the initial development stages of our e-nose setup, which was
conceived as a detector for explosives. In this test we group the substances in two groups: one contains
TNT, DNT and RDX, and the other one contains the substances. Table 4 shows the confusion matrix
for a binary classifier, explosives vs. other substances. The classification accuracy here is 96% (with
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a baseline of 61%), which is high, considering the rather heterogeneous composition of each of the two
groups. The value of 0.94 for explosives in the classification Table 4 represents the ratio of correctly
classified instances for explosive versus all other substances.

Table 4. Confusion matrix for explosives vs. other substances using the Random Forest algorithm.

% Explosives Other

Explosives 0.94 0.06
Other 0.03 0.97

4. Discussion

Looking at the heatmaps for the individual sensor responses when varying the concentration
and flow of the target substance can give us a quick insight into which sensors are appropriate for
the detection of particular substances and which ones do not respond. However, as the output of
a multi-sensor e-nose is complex, meaning that some sensors respond to several substances and many
sensors respond to a particular substance, a manual interpretation is practically impossible.

On the other hand, methods of artificial intelligence are well suited to help us with the classification
task. Apart from building the classification model, in our case using Random Forest, we can learn
several things about the task by looking at the confusion matrices that have been obtained. In our case,
we noticed among the studied substances that TNT and DNT are often misclassified as one another.
This is most likely due to the similar chemical structure and the similar affinity of the functionalized
surfaces of our sensors to these two substances. However, if we group TND and DNT together (which
is reasonable due to their chemical similarity), they are well distinguished from all the other substances.
The value of 0.94 for explosives in the classification Table 4 represents the ratio of correctly classified
instances for explosive versus all other substances and is considered a very good result.

This leads to the conclusion that the set of six different silane molecules: (1) 3-aminopropyl)
trimethoxysilane (APTMS), (2) p-aminophenyltrimethoxysilane (APhS), (3) 1-[3-(trimethoxysilyl)-propyl]
urea (UPS), (4) N-(2-aminoethyl)-3-aminopropyltri-methoxysilane (EDA), (5) N,N-dimethyl-aminopropyl)
trimethoxysilane (DMS) and (6) octadecyltrimethoxysilane (ODS) are very appropriate for the selective
detection of TNT and DNT molecules in the atmosphere.

Building classification algorithms can provide an insight into which sets of substances can be
distinguished well among themselves, as demonstrated in Tables 2–4. In addition, models based on
decision trees are easy to interpret, allowing us to see which features are more important and which
are not—if features related to a particular sensor do not appear in decision trees, the sensor can be
discarded altogether when optimizing the sensor array for a particular application. For example, in the
case where we distinguish explosives from other substances, an inspection of some decision trees
generated by the algorithm shows that sensors REF-B, 143C-a and 132A-b play the most prominent role
in the classification (they appear at the initial nodes of several trees). Looking at the responses of all
the sensors to all the substances at the maximum concentration and flow (Figure 6), this is reasonable,
since these sensors respond to TNT, DNT and RDX better than to some other substances.

One of the key steps in improving the classification accuracy of our algorithm was to focus only
on the subset of the data with stronger signals, i.e., the measurements with higher concentrations and
flows. While this might appear to be a drawback, we should remember that the initial concentration
(especially for explosives) was already very low—increasing the concentration to higher values would
likely result in a much higher response, making the classification task easier.

From the algorithm point of view, there are several ways to improve the accuracy, such as
including additional features that are calculated as combinations of more than one sensor, or using
advanced methods such as neural networks. However, as we already pointed out at the beginning,
the goal was to demonstrate the feasibility of the approach and to see how machine-learning can
guide us to improve and optimize the sensor array itself. Neural networks were previously used in
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e-noses [3,5,8,10]; however, as they are essentially “black boxes” that only produce results without
an intuitive interpretation, they are only suitable for a “final” application and not for our case, where we
are still in the development and optimization phase. The main takeaway from the experiments should
then be seen as an insight into how to assemble sensors to work well on a chosen set of substances—which
sensors to keep and whether we should add additional sensors that react to substances to which the
current system responds poorly (as seen with H2S and SO2 in our case). Alternatively, if we want to
distinguish between TNT and DNT, we should focus on a sensor functionalization that will exploit the
difference between the two.
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and flow rates.

There are two important problems to consider for future work from the computer-science point of
view. First, let us imagine a situation where the system is trained to work on a specific set of substances.
Now, we want to expand the functionality of the system to work on additional classes, but we do not
have the original training set (perhaps we are an end user and the manufacturer is unwilling to share
the data) that would allow us to straightforwardly train the new model. Second, due to the nature of
the manufacturing of individual sensors, which includes coating with a functionalized layer followed
by laser abrasion, no two sensors of the same type will be identical—thus the classification model
trained on the data obtained on one setup might not work with the same accuracy on another one.
The task here is to optimize the classification model to work on the second setup without having to
repeat all the measurements for the training set. In computer science, both of these two problems can
be viewed as tasks for the transfer-learning domain [23].

5. Conclusions

In this paper we demonstrated that we can apply relatively simple machine-learning models to
assist in the classification of sensor-array responses to various chemical substances, where we are
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independently varying both the concentration of the target substance in the nitrogen carrier gas and
the gas flow. Classification models were built using the Random Forest algorithm, which builds
a series of decision trees on subsets of the training set. Inspection of the individual decision trees can
provide an insight into which sensors are particularly useful for a specific task, thus allowing us to
optimize the setup if needed. The classification accuracy depends on the number of substances we
want to distinguish—for seven substances, the accuracy is 72%, for the four best (including a joint
class of TNT and DNT), the accuracy rises to 90%, while for a binary classifier distinguishing between
explosives and other substances in the set, it reaches 96%. The experiments clearly demonstrate that
the silane monolayers used in our sensors are particularly well suited to the detection of explosives.
Future work will include 64 sensors with different coatings, providing sensitivity to other compounds,
measuring additional sets of substances, and the simultaneous detection of combinations of two or
more substances.
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