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Geometric stabilisation of topological defects on
micro-helices and grooved rods in nematic liquid
crystals†

Maryam Nikkhou *a and Igor Muševičbc

We demonstrate how the geometric shape of a rod in a nematic liquid crystal can stabilise a large

number of oppositely charged topological defects. A rod is of the same shape as a sphere, both having

genus g = 0, which means that the sum of all topological charges of defects on a rod has to be �1

according to the Gauss–Bonnet theorem. If the rod is straight, it usually shows only one hyperbolic

hedgehog or a Saturn ring defect with negative unit charge. Multiple unit charges can be stabilised either

by friction or large length, which screens the pair-interaction of unit charges. Here we show that the

curved shape of helical colloids or the grooved surface of a straight rod create energy barriers between

neighbouring defects and prevent their annihilation. The experiments also clearly support the Gauss–

Bonnet theorem and show that topological defects on helices or grooved rods always appear in an odd

number of unit topological charges with a total topological charge of �1.

1 Introduction

Topological defects1–5 are omnipresent in nature and are
attracting growing interest both from fundamental and applied
points of view in very different areas, ranging from cosmology
to condensed-matter systems.6,10 In particular, soft matter
systems comprising nematic liquid crystals (NLCs) have been
considered intensively to study the nature of topological defects.
The NLC molecules have long-range orientational order and
are characterized by the director, which is the direction of the
average orientation of the molecules in a bulk of the liquid
crystal (LC). Topological defects represent a region of a LC,
where the order is not defined, and appear in the form of point
monopoles and disclination lines or loops in the NLCs.7–12

A particle inserted into a NLC can lead to the formation of
various types of topological defects, depending on the particle’s
shape and topology, confinement and the anchoring of the
NLC molecules on the particle surface.13–20 The defects can be
manipulated using external field and temperature change.
In particular laser tweezers can be used to manipulate very
efficiently the shape and structure of topological defects.

In all the manipulation of topological defects the total topo-
logical charge is conserved, which was demonstrated in a
number of articles. Colloidal particles in LCs self-assembled
by topological defects can serve as complex soft-matter systems
and can be controlled by laser tweezers or other external
stimuli. The interrelations between the topology of particles
with various genera, namely spheres,21,22 rods,17,23 handle-
bodies,15 fractals24 and accompanying defects in LCs were
studied, using both theoretical and experimental methods.
Moreover, Yuan et al.25 recently studied the effect of the
chirality of colloidal inclusions in the form of chiral springs
and helices on the colloidal self-organization in the NLC.
That study was focused on the pair interactions of helical
objects with tangential anchoring in the nematic elastic field,
and the creation and stabilisation of topological defects on
chiral springs and helices were not in the focus of that work.
Senyuk et al.16 studied topological defects on colloidal spirals,
which were essentially two-dimensional objects. They found a
huge variety of director configurations featuring both singular
defects and smooth topological structures, which result in
unusual forms of particle assembly.

We recently demonstrated full control over the creation,
manipulation and annihilation of the topological charges on
a long fiber immersed in a NLC.17 In spite of a very simple
topology of the fibre, which is of the same form as a sphere with
genus g = 0, we found an amazing variety of topological defects,
which could be created by light and partially stabilised in the
form of point monopoles and metastable loops on a fibre.
We clearly demonstrated that all the experiments of charge
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creation are governed by the conservation of the total topo-
logical charge on a fibre. This means that pairs of oppositely
charged monopoles or loops or zero charge loops are always
created to satisfy the charge conservation requirement. Once
these objects are created, they are always subject to attractive or
repulsive forces of elastic origin, emanating from nearby topo-
logical defects. This means that in due time they shall be
attracted and annihilated into the vacuum, which was also
analysed recently in good detail.28 The question remained
unanswered if it is possible to stabilise pairs of oppositely
charged defects at very small separation, where the elastic
attractive forces are quite strong.

In this article, we study the creation and geometric stabilisa-
tion of an arbitrary number of pairs of topological defects on
colloidal particles topologically equivalent to a sphere (genus
g = 0), but with complex geometrical shape. The conservation of
the topological charge causes the simultaneous creation of a
pair of a Saturn ring and Saturn anti-ring with opposite
topological charges and winding numbers. These rings are
individually inherently stable, but since they are paired and
oppositely charged, they tend to attract and annihilate when
their separation is less than B40 mm. To create a series of pairs
of oppositely charged topological rings on a small, rod-like
colloidal particle and stabilise them within a separation of a
few mm, we fabricated helices and grooved-cylinders, which are
described and discussed in this article. We demonstrate that by
controlling the number of and space between grooves in the
cylinder, any odd number of topological defects with precise
spatial positions can be created and stabilised. In addition, we
analyse the interaction between grooved-cylinders with an
arbitrary number of grooves and topological defects, which
leads to the creation of novel and complex colloidal structures.

2 Materials and experimental methods

The micro-helices and the micro-grooved cylinders were fabricated
using a direct laser writing system (Photonic Professional, Nano-
scribe GmbH). The glass slides used as substrates for the fabrica-
tion of structures were cleaned with lint free wipes, isopropyl
alcohol (IPA) and acetone, and sonicated in an acetone bath and
IPA bath for 2� 15 min. Then for further cleaning the glasses were
placed under an IPA vapor degreaser for one hour. Finally they
were treated by a plasma cleaner for 15 min. A UV-sensitive
polymer photoresist, IP-L 780 (Nanoscribe GmbH), was dropped
on the glass slide and the selected area of the resist was exposed
using a femtosecond pulsed laser at a wavelength of 780 nm and a
repetition rate of 80 MHz. The laser beam is focused using a
100� oil immersion objective lens (numerical aperture NA = 1.4).
The exposed resist was polymerized only in the small focusing
volume where intensities are high enough for two photon
absorption, and the three-dimensional micro-structures were
made. The writing process was done by moving the glass
substrate relatively to the laser focus. The movement of the
substrate was controlled by a motorized x–y stage for coarse
displacements and a piezo stage for laser writing which has a

range of 300 mm3. After the writing process was completed, the
sample was immersed in a SU-8 developer or IPA for 30 min, rinsed
with IPA for 5 min, and blown with dry N2. The unpolymerized
photoresist was washed away and the polymerized structures
remained on the glass.

Fig. 1(a) presents the SEM images of printed micro-helices
and micro-grooved cylinders on a glass substrate. Each sample
contains several hundreds of micro-structures. A micro-helix
with 3 turns has a radius of 2 or 3 mm and a pitch of 8 or 12 mm.
The micro-grooved cylinder was made by using 10 small cylinders
stacked together with a radius of 1 mm and a height of 2 mm. To
produce a strong homeotropic anchoring of the surrounding
NLC 5CB (4-cyano-40-pentylbiphenyl), first, the sample was
exposed to a plasma gun for 10 min and then immersed gently
in an aqueous solution (1 vl%) of DMOAP silane (octadecyldimethyl-
(3-trimethoxysilylpropyl)ammonium chloride, ABCR GmbH) for
5 min. Finally, the sample was washed with deionized water to
remove the extra silane, blown with dry N2 and left in an oven at
120 1C for 30 min.

The micro-structures were harvested from the glass sub-
strate after being poked by the needle. The needle was installed
on a x–y–z translation stage, observed under a good quality
optical microscope and moved gently close to the micro-
structures to detach them from the substrate one by one. Then,
a few microliters of the NLC were dropped on the substrate
where the micro-structures were placed. After mechanically
mixing the NLC with the micro-structures, the nematic colloidal
dispersion was collected with a pipette and introduced into a
planar cell by capillary forces. The cell was made of two parallel
optically transparent indium thin oxide (ITO) coated glasses
covered by a thin layer of rubbed-polyimide (PI 5291, Brewer
Science) to ensure an excellent planar LC orientation. The ITO
coating was used in order to increase the absorption of the laser
light of the tweezers at the surface of the glasses and locally

Fig. 1 SEM images of the micro-structures on the glass plate. (a) The
polymerized sample is ready to poke the grooved cylinders and helices
from the glass plate. (b) Details of the grooved and helical microstructures
on the glass after they were poked from the glass. (c) Details of grooved
cylinders. Image courtesy of A. Jelen.
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melt the LC. The cell gap of 10 mm was controlled with two thin
mylar strips and measured by a standard interference technique
before filling the colloidal dispersion. In some experiments silica
microspheres with a diameter of 4.7 mm, also treated with silane
for perpendicular surface anchoring of the NLC, were introduced
in the same cell and served as a reference.

We have used laser tweezers with an infrared laser operating
at 1064 nm as a light source. The tweezers setup was built
around an inverted microscope (Nikon Eclipse, TE2000-U) with
a Pixelink PLA 741 camera or a Canon EOS 550D camera at
different frame rates from 10 fps to 100 fps. A pair of acousto-optic
deflectors driven by a computerized system (Aresis, Tweez 70) was
used for trap manipulation.

3 Disclination loops around spiral
colloids

In this experiment we study topological defects around spiral
colloidal particles with homeotropic surface anchoring in a
nematic planar cell. After the colloids were dispersed in the
NLC and introduced into the measuring cell, the region around
the spiral colloid is locally heated into the isotropic phase with
a focused laser beam so that one can see the shape clearly in
Fig. 2(a), first panel. By shutting off the light the isotropic
island undergoes a rapid phase transition that leaves behind a

dense tangle of topological defects. In a fraction of a second
this tangle annihilates and pins the defect loops on the helix
(Fig. 2 and ESI,† Movie 1).

Two different forms of defect loops can be created around
the micro-helix, which are either a small loop in the regions
parallel to the rubbing direction (shown with a dotted blue
circle in Fig. 2(b)) or an elongated loop in the sections of
the helix that make an angle with the rubbing direction
(shown with a dotted red circle in Fig. 2(b)). The defect loops
are very close to the micro-helix and can be hardly seen.
Therefore, a small isotropic region is created in the vicinity of
the helix using the laser tweezers. By carefully moving the
optically induced isotropic island towards the helix, one can grab
the loops and move away from the helix as shown in Fig. 2(c).
Fig. 2(c), right panel, shows the schematic representation of the
defect rings around the helix. More details can be seen from the
ESI,† Movie 1, showing how defects are produced on the helix
after quenching the NLC with the laser tweezers. ESI,† Movie 2,
shows how individual defects can be grabbed and pulled by the
light of the laser tweezers.

The significance of the spiral colloidal particles is their
ability to stabilise the plurality of defect rings and prevent their
annihilation. Therefore, several defects can be created and they
coexist in a very small region of the helix. In the case of a
straight micro-rod, which was studied recently,17 the minimum
separation between two defect rings of opposite topological

Fig. 2 Spiral colloidal particles in a nematic planar cell. (a) Creation of a pair of topological defects around the micro-helix by quenching the NLC
surrounding the helix using the laser tweezers. Details of quenching can be seen in the ESI,† Movie 1. (b) The red circles show elongated defect loops at
an angle of B451 to the rubbing direction and the blue circle shows a small loop perpendicular to the rubbing direction. (c) The laser tweezers are used to
pull the defects away from the helix. Grabbing and tweezing of topological defects can be seen in the ESI,† Movie 2. The last panel shows the schematic
representation of the director and loops/defects wrapping the helical particles.
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charge and winding is E40 mm. If defects are closer to each
other, the defects attract each other via the elastic forces and
annihilate. So in order to create two stable defect rings, the
length of the micro-rod should be more than 50 mm, and for a
large number of defect rings a bigger rod is required. But the
wavelike 3D shape of the spiral traps the defects, stabilises
them on the helix, and thus prevents them from moving close
to each other and annihilation. The spiral shape therefore acts
as a series of energy barriers, which are of elastic origin and
spatially separate individual defects. If they move closer to each
other by thermal motion, the elastic barrier provided by the
spiralling shape prevents their further approach and annihila-
tion. On the other hand, as many defects are created in a short
part of the helix, it is difficult to determine the topological
signature of the defects.

The origin of these elastic energy barriers, which prevent the
movement of topological defects along the helices can be
understood using a simple model with one 1/2 ring on a helical
rod, which is placed in a planar nematic cell of thickness d.
It is well known that 1/2 defect rings are most stable on a
straight fiber, which is directed along the nematic director in a
homogeneous nematic cell with planar surface anchoring.
The minimum free energy of such a ring is in the situation,
when the plane of the ring is perpendicular to the director.
Now, if we consider a wavy spiral-like fibre, all sections of this
spiral are tilted at an angle a with respect to the far field
director. This means that a 1/2 ring shall be free to move along
the spiralling fibre, if the spiral is immersed into a NLC with
infinite thickness. However, the helices are always placed in

cells with finite thickness of the nematic LC. As a consequence,
there will be an energy difference for the 1/2 defect ring, which
is placed in different sections of the spiral. In those places,
where the spiral is in the center of the cell, the elastic energy of
the 1/2 defect shall be lower than in sections of the spiral,
which are closer to the confining surfaces. Close to the surface,
the 1/2 defect shall be additionally distorted because of the
strong and homogeneous anchoring conditions at the surface.
We therefore conclude that the confinement of the spiralling
fibres in planar cells induces energy barriers for rings placed in
different sections of 1/2 rings on a spiral. The exact values of
these barriers depend strongly on the severity of confinement
and can be calculated accurately only by using numerical
Landau de Gennes simulations.

We should note that after each quenching the LC around the
micro-helix by laser tweezers, a different set of the disclination
defects usually appeared, which illustrates the randomness of
the selection of possible topological states on a helix. This is
easily recognised by comparing two different topologies of the
helical particles, presented in Fig. 3(a and b). Although it seems
difficult to recognize the type and shape of topological defects,
a combination of laser tweezing red-plate visualisation and the
use of probe dipolar colloidal particles helps us to determine
the type of defect without ambiguity. We have used two
methods to determine the presence and the sign of each defect.
The sample is placed between crossed polarisers with a l red
wave-plate, which is inserted at 45 degrees angle with respect to
the polariser. The colours of the nematic structure around the
micro-helix indicate different orientations of the NLC molecules.

Fig. 3 (a) Micro-helix with the pairs of topological defects, and a dipolar microsphere, which serves as a reference particle. The second panel is taken
under crossed polarisers with inserted l red wave-plate. By comparing the colours in the vicinity of the micro-helix and a dipolar micro-sphere, one can
recognize the sign of the defect rings around the helix in different regions. (b) Another micro-helix with a different set of topological defect loops. The
second panel is taken under crossed polarisers with inserted l red wave-plate. (c) Schematic drawing of the director around the Saturn-rings and Saturn
anti-rings on the micro-helix shown in (a).
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The color change in each point indicates the existence of the
disclination loops. The sign or winding of the disclination loops
can be determined by comparing the director pattern in the
vicinity of the micro-helix with the corresponding pattern
around a dipolar micro-sphere as shown in Fig. 3(a). In this
case, the bluish and yellowish colours are clearly visible and
indicate two perpendicular directions, inclined at an angle of
B451 with respect to the far-field director. The director pattern
around the helix for this experiment is shown schematically
in Fig. 3(c).

In some experiments, such as the one shown in Fig. 3(a and b),
it is difficult to recognize the colour change around the helix,
because of the different combinations of topological defects and
the wavelike shape of the helix, so another method has been used
to recognize the topological charge of defects, as explained in
Fig. 4. This method, also called ‘‘a colloidal probe’’ method is
based on a small dipolar colloidal particle (i.e. the probe), which is
placed close to the defect to be analysed and released. It has been
shown consistently in a number of articles17,26,27 that such a
colloidal probe is attracted with its hyperbolic hedgehog (i.e.
the �1 charged part) to the + hedgehog and vice versa, the
+1 part of the probe is always to the �1 hedgehogs or even
negatively charged sections of closed loops. We should note
that this was demonstrated for topological defects in a form of
hedgehogs and loops on a straight fibre.

In the experiment presented in Fig. 4(a), five regions of the
micro-helix are marked with ellipsoids to explain the presence
of defects, region by region. A small dipolar micro-sphere is left
free close to the micro-helix in different positions by the laser
tweezers. As the micro-sphere is by convention assigned a +1
topological charge for the particle and �1 topological charge
for the accompanying hyperbolic point defect, such a particle
induces an elastic distortion that would be repelled by the
equally charged part of the disclination line on the micro-helix
and attracted to the oppositely charged part. It should be noted
that in some nematic textures11 and around topologically non-
trivial objects, such as a torus, the assignment of the topological
charge to a particular defect might be ambiguous.15 For example,
it has been demonstrated that a hyperbolic hedgehog can in
some cases be assigned either a positive or negative charge.
On the other hand, we have performed many experiments and
analyses of defects on fibers,17,26,27 where the charge assignment
was not ambiguous and the hyperbolic hedgehog could always
and consistently be assigned the �1 charge.

The first panel in Fig. 4(b) shows the micro-sphere with the
hyperbolic (�1) point defect on top, which is left free in the
right side of the micro-helix. First, the dipole started to move
upward and then to the micro-helix. From the last panel of
Fig. 4(b), one can see that when the dipole approached the
helix, the � end of the dipole was attracted to region 4 and its +
end was attracted to region 2. The regions on the helix and their
numbering are shown in Fig. 4(a). Therefore, we expect the +
charged ring in region 4 and the � charged ring in region 2 of
the helix. When the initial position of the dipole was changed
and it was released in front of the upper end of the helix, as
shown in Fig. 4(c), first panel, the dipole moved through a

diagonal pass and reached the helix similar to the previous
experiment (see Fig. 4(c), last panel).

In the following we reversed the direction of the topological
dipole and repeated the experiments. Fig. 4(d) and (e), first
panels, show the dipole with the hyperbolic hedgehog defect
now pointing downwards on the right-hand side of the helix in
two different initial positions. In both cases the dipole was
attracted to region 2 of the helix with the + end (i.e. the
microsphere). Enlarged panels in Fig. 4(c) and Fig. 4(d) clearly
show the difference between the dipoles pointing upwards or
downwards, and they are fully consistent with the sign alloca-
tion shown schematically (Fig. 4(m)). These two experiments
clearly confirm the negative sign of region 2.

In the last three experiments the dipole with hyperbolic
hedgehog defects pointing upwards was released on the left
side of the helix with different initial positions (see Fig. 4(f–h),
first panels). Fig. 4(f) shows the dipole moving towards the helix
and then downward approaching region 1 with its + end. Thus,
region 1 can be assigned the negative sign. In Fig. 4(g) the
initial position of the dipole is lower than in the previous
experiment and it is in front of region 1. In this case first, the
dipole moved parallel to the helix, then, perpendicular to the
helix. The last panel confirmed the negative sign for region 1.
As the sign of regions 1 and 2 were the same and negative, we
conclude that this is a single elongated ring with�1 topological
charge. This is due to topological rules on the fibre,17 which
state that two neighbouring topological defects on a fibre must
have opposite winding and sign of the charge. Thereby, if the
two regions 1 and 2 show the same sign, they belong to
the same topological defect. When the dipole was released
in the upper end of the helix, it has been attracted to region
5 from the + end, which represents negative sign of the
disclination defect in this region as shown in Fig. 4(h). From
these experiments we can draw the director pattern for this
helix, which is shown schematically in Fig. 4(m).

We should point out that there are several studies showing
the interaction of micro-spheres with curved walls,29,30 which is
due to the convex and concave surfaces of the micro-spheres
and the walls. They have demonstrated lock-and-key inter-
actions, in which a micro-sphere (the key) was attracted to a
dale (the lock) along the wavy wall in order to minimize elastic
distortion in the nematic director field. The question that
appears in our experiment is if the curved shape of the spiral
colloidal particles has an effect on the colloidal probe method.

To answer this question we can compare the enlarged images
in Fig. 4(c and d). In Fig. 4(c) the �1 hedgehog of the probe is
attracted to the +1 hedgehog in Section 4, but at the same time
the curved surface of the probe fits nicely the concave section
(the dale) of the spiral. This leaves an open question of which
mechanism is dominant here: key–lock or pair hedgehog inter-
action. The answer is shown in the last, enlarged image in
Fig. 4(j), where the +1 part of the probe is attracted to the ‘‘hill’’
of the spiral instead of to the dale. This means that in our case
the hedgehog–hedgehog interaction is stronger than the key–
lock interaction and the convex surface of the sphere fits to the
convex surface of the helix because the hedgehog pair
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interaction is stronger and decisive. This is also evident by
comparing Fig. 4(k) and (l), which also gives a consistent answer.
The colloidal probe method therefore gives consistent assign-
ment of the sign of the topological charge also on wavy, spiral
colloidal particles.

To this end and to be absolutely sure we have also per-
formed other experiments using helical particles with longer

pitch and smaller micro-sphere, which should change the
key–lock interaction but not the pair hedgehog interaction.
The pitch of the helix was increased to 16 mm and the sphere
diameter was decreased to 2.4 mm. The cell gap was 12 mm. In
this experiment shown in Fig. 5 the dipole with hyperbolic
hedgehog defects pointing upwards was released on the right
side of the helix. First, the dipole is attracted to a ring on the

Fig. 4 (a) Division of the micro-helix with the complex set of topological defect loops in five regions to determine the disclination defects in each region.
(b and c) The dipole with the hyperbolic hedgehog defect pointing upward in the right side of the helix is attracted to region 2 from + end and region 4
from its � end. This attraction indicates the � sign for region 2 and the + sign for region 4. (d and e) The dipolar micro-sphere with point defects
downward is attracted from the + end to region 2, which demonstrate the � sign for this region. (f and g) Dipole with point defects on top in the left side
of the micro-helix has been attracted to region 1 from its + end, assigning this region with the negative sign. (h) Dipole with point defects pointing upward
in the left side of the micro-helix is attracted to region 5 from its + end. Thus, the sign of the disclination defect in this region is negative. The dashed lines
present the trajectory of the dipole. (i–l) Show higher magnification details of the interaction between the micro-sphere and the defect rings on the helix.
(m) Schematic presentation of the director pattern around the micro-helix.
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helix from its + end and then passes through the helix
and interacts with another ring from its � end (see Fig. 5).
The micro-sphere practically does not see the wavy shape of the
helix and is directly attracted to the hedgehogs on a spiral.
This confirms our conjecture that oppositely charged defects
are attracted to each other, the sign of the defect rings can be
determined unambiguously also on spiral colloidal particles.

4 Topological charges on a
micro-grooved cylinder

Micro-grooved-cylinders are fabricated with DLW as explained
in Section 2. The micro-grooved-cylinders with a diameter of
2 mm and normal surface anchoring are inserted into the planar
nematic cell. Several defect rings are created very close to each
other and are stable for a very long time as shown in Fig. 6(a).
This is due to the grooved surface of the cylinder, which
prevents the motion of the defect rings once they are created.
One can clearly see from the crossed polariser image in the
second panel of Fig. 6(a) that the defects are trapped into the
grooves of the rod, which is also visible from the red-plate
image in the far right panel of Fig. 6(a).

In this case the defects were created during the flow of
nematic dispersion into the measuring cell. The topological
defects which are formed while filling the sandwich cell are
spontaneous and uncontrolled. However, we can create them
also by using the laser tweezers. The controlled creation and
manipulation of topological defects using the laser tweezers are
shown in Fig. 6(b). The second panel of Fig. 6(b) shows how the
ring, which is trapped in one of the grooves, is grabbed with the
laser tweezers and dragged up. That leaves enough space below
the rings to create another pair using laser tweezers, as shown
in the sequence of images in Fig. 6(c).

Because of the topological rules on a long fibre, the sign of
topological charge of neighbouring defects is always opposite,

which results in alternating charge of defects, as we move along
the fibre. Because of opposite charge, any pair of defects on a
fibre is attracted to each other and tries to annihilate and lower
the total free energy of the system. If grooves are made into the
fibre, they prevent the motion of topological defects and stabilize
oppositely charged defect pairs. However, if the separation
between the grooves is made smaller, there shall be a critical
separation, where the elastic attractive forces shall become
stronger than the stabilizing force due to grooves and the pair
shall be released from the grooves and will annihilate. To
estimate the minimum separation between the grooves that
could stabilise oppositely charged defects, we need to measure
the attractive force between oppositely charged topological
defects as a function of their separation.

The elastic attractive force between two oppositely charged
defect rings was measured in a separate experiment, which is
illustrated in Fig. 7. We took a small rod with a diameter of
2 mm and created a pair of oppositely charged rings by using
the laser tweezers, as described previously.17 The two rings are
attracted to each other because of the elastic deformation of the
director field, and they start approaching each other and finally
annihilate into the vacuum, as illustrated by a series of video
snapshots in Fig. 7(a). The attractive force between the two
defect rings can be calculated from the captured video follow-
ing the well-known procedure.33 First, we determine instanta-
neous positions of each ring for each captured frame by
tracking their positions. Then we calculate their instantaneous
velocities by numerical differentiation of their trajectories.
Once we know the velocities of both rings, we can calculate
the attractive force Fattract between them. Namely, the motion of
a defect ring can be considered as a motion of a line-like object
through a viscous fluid. The Stokes drag force on such a closed
line of length L is given by Fdrag = pRLv. Here, R is the viscous
drag coefficient per unit length of the line and v is the velocity
of the line. Viscous drag coefficient R has been measured for 1/2
disclination lines in 5CB by Mertelj et al.31 and is R = 0.15 Pa s.

Fig. 5 The interaction between topological defect rings on the helix and dipolar micro-sphere. The sphere is attracted to a ring on the helix from its +
end, then passes through the helix and interacts with an another ring from its � end (point defect). The video of this experiment can be seen in the ESI,†
Movie 3.
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L is in our case the diameter of the defect ring which is equal to
3.2 mm. The motion of defect lines in LCs is overdamped, which
means that their acceleration is negligible and the sum of all
forces on a moving ring is zero, Fdrag + Fattract = 0. Because we
know the Stokes drag force from our experiments, we can
determine the elastic attractive force between the oppositely
charged rings on a fibre, which is shown in Fig. 7(b). At large
separation, B6 mm, the force is B4 pN and sharply increases
to B15 pN at a separation of B2.6 mm as shown in Fig. 7(b).
For shorter separation the rings join together, create a single
neutral ring, and then annihilate into the vacuum.

On the other hand, the two rings have to be pulled-out of the
grooves if they are to move towards each other. This means that
force is required to stretch the loop to move it out of the grooves
and this force can be provided only by the attractive elastic
force between the rings. We can estimate the force needed to
stretch the rings from the experiments of colloidal entangle-
ment by Ravnik et al.32 It was measured by the laser tweezers
that a typical magnitude of the force needed to stretch and
elongate the �1/2 Saturn ring in 5CB is around B30 pN.
This means that the attractive elastic force between the oppo-
sitely charged rings is not strong enough to move the defects
from the grooves at the smallest separation which was mea-
sured in our experiment in Fig. 7(b), i.e. B2.6 mm. This is
therefore the upper estimated value for the critical separation
between the �1/2 and +1/2 rings on grooved rods, where the
defects are still stable. The exact value of the smallest separa-
tion at which the rings on a grooved rod are still stable can only
be calculated numerically using fully tensorial Landau-de
Gennes modelling. However, it is clear from our estimate that
grooves on a rod are extremely effective in stabilizing the
defects on a fibre, presumably down to micrometer separation.

The experiments show that a grooved cylinder with 2 grooves
and 3 ribs (R = 3) can carry either 1 or 3 topological defects, as
illustrated in Fig. 8. A single topological defect is in the form of
hyperbolic hedgehog or a Saturn-ring as shown in Fig. 8(b).
3 topological defects exist in the form of one point defect with a
topological charge of �1, one Saturn-anti-ring with a charge

Fig. 6 Defects on a micro-grooved cylinder in a planar nematic cell.
(a) The left image presents the unpolarised optical micrograph of a
grooved cylinder which is accompanied by a Saturn-ring and three extra
pairs of defects, which are created during the filling of the measurement
cell by the nematic dispersion or using the laser tweezers. Note the
different brightness of the structures in the grooves, which corresponds
to opposite charge and winding of defect rings. The middle image is taken
under crossed polarisers, with notable differences in the brightness of
different grooves. The right panel is taken under crossed polarisers with a
full wave-plate, which is inserted at 45 degrees with respect to the
polariser P and crossed analyser A. The blue and yellow colors clearly
show the reversed director field in the vicinity of the grooved cylinder,
which indicates alternation of loops’ windings and charge. (b) Laser
tweezers are used to move a Saturn-ring along the grooved cylinder.
(c) A pair of topological defects are created using the light of laser tweezers.
Note an odd number of defects on a grooved cylinder in all cases.

Fig. 7 (a) Pair interaction of defect rings freely moving on a cylinder with a
diameter of 2 mm. (b) The attractive force between two defect rings, as
determined by video tracking of particles.33
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of +1 and the third one can be either a hyperbolic point defect
(Fig. 8(c)) or a Saturn-ring (Fig. 8(d)) with a charge of �1.
In all cases we have an odd number of defects and their charge
adds up to �1.

Fig. 9 represents schematically the relation between R and
the number of topological defects for various types of grooved
cylinders. The number of ribs R controls the number of max-
imum topological defects that can be efficiently stabilised on
the particle. If R is an odd number, the maximum number of
topological defects is equal to R. If R is an even number, the
maximum number of topological defects is equal to R + 1.
Regardless of the number of ribs/grooves, the total number of
topological defects on any kind of rod is always an odd number.
The grooved cylinder itself can be assigned a +1 charge and this
charge has to be compensated by the accompanying defect(s).
To satisfy the conservation of the total topological charge
any even number of topological defects can therefore also be
created and stabilised by using the laser tweezers.

Fig. 9(a) shows a cylinder with R = 2 and a single groove.
The maximum number of topological defects is equal to 3.
A cylinder with R = 3 and 2 grooves is also accompanied by
3 topological defects (Fig. 9(b)) as discussed in detail in Fig. 5.
A cylinder with R = 4 can carry either 3 or 5 topological defects
as shown in Fig. 9(c). Let us note that defects could be
re-located to different grooves, as far as their total charge
equals to �1. The Saturn-anti-ring in Fig. 9(c), first panel, is
located in the groove between two upper ribs, but can be moved
between two other ribs using laser tweezers. A cylinder with

R = 5 is accompanied by 3 or 5 topological defects (see Fig. 9(d)).
Two first panels show the cylinder with 3 topological defects,
which are in the form of two hyperbolic hedgehogs and one
Saturn-anti-ring (first panel) or one hedgehog hyperbolic, one
Saturn-anti-ring, and one Saturn-ring (second panel). Two last
panels show the cylinder with 5 topological defects, which are
in the form of two hyperbolic hedgehogs, two Saturn-anti-rings
and one Saturn-ring (third panel) or one hedgehog hyperbolic,
two Saturn-anti-rings and two Saturn-rings (fourth panel). In all
the grooved cylinders in Fig. 9, the hyperbolic hedgehogs are
located in the end of the cylinder and the Saturn-rings and Saturn-
anti-rings are located in the grooves between the ribs alternatively.
Note the alternation of the sign of neighbouring defects, which is
a common topological rule for charges on a rod.17

5 Interaction between micro-grooved
cylinders

When several grooved cylinders are brought together in the
nematic liquid crystal, they start to interact with each other and
their regions of distortion start to overlap. An arbitrary number
of topological defects and their random positions on the
particles enable the design of quite complex anisotropic build-
ing blocks. These particles are smart which means that they are
capable of recognising topological defects with plus or minus

Fig. 8 Micro-grooved cylinder with 2 grooves. (a) The unpolarised optical
micrographs of a grooved cylinder. Note a difference in the apparent
brightness of two grooves. This is because one of the grooves is filled with
a �1 defect and the other is not. The SEM image before inserting the
particle in LC is shown in the inset. (b) Optical micrograph of a grooved
cylinder accompanied by a Saturn-ring, first panel. The second and third
panels show schematically the director field arising from two possible
kinds of topological defects, which are either a point or ring defect,
respectively. (c) Another possible constellation of unit charge defects on
a cylinder with two grooves: one Saturn-anti-ring with +1 charge is
accompanied by two hyperbolic hedgehogs on each end of the cylinder.
(d) The last constellation is made of one pair of Saturn ring and anti-
Saturn-ring, and a hyperbolic hedgehog on one end of the cylinder. (b–d)
The micrographs are taken under crossed polarisers with an inserted
optical red retardation plate.

Fig. 9 Schematic representation of topological states stabilised by micro-
grooved cylinders. (a–d) Defects on a rod are of unit charge and appear in
the form of a hyperbolic hedgehog, Saturn-ring or Saturn-anti-ring. The
maximum number of defects is controlled by the number of ribs/grooves.
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charges via a simple universal law: equally charged defects repel
from each other and oppositely charged defects are attracted
to each other.

Fig. 10(a) shows four grooved cylinders with various
numbers of ribs/grooves and topological defects and their
interactions, which results in complex structures, engineered
by the topology. First, two grooved cylinders with R = 3 and R = 4
(marked with numbers 1 and 2, respectively) are left free in the
vicinity of each other. Particle 1 has one defect with �1 charge
and particle 2 has two defects with �1 charges and one defect
with +1 charge. Fig. 10(b) shows the sequence of optical micro-
graphs of the attraction between these two particles, which are
extracted from the recorded video. During this interaction,
particle 1 moves downward to position its + end toward
the �1 ring on particle 2, while the �1 ring on particle 1 is
bound to the +1 ring on particle 2. The last panel shows the
configuration of the director field around the colloidal dimer
using the l wave-plate. Particle 3 with a hyperbolic hedgehog
defect pointing downwards is brought close to the colloidal
dimer by the laser tweezers and left free by switching off the
laser (Fig. 10(c)). Particle 3 is attracted to the�1 ring on particle
2 from its + end. The �1 point defect on particle 3 starts to
move towards the +1 ring on particle 2 as shown in Fig. 10(c),
second to fourth panels. Fig. 10(d) shows the interaction
between the colloidal trimer and particle 4 with R = 2 and a
hyperbolic hedgehog defect. One can see from the sequence of

optical micro-graphs that particle 4 starts to move downward
and then to the colloidal trimer in order to match the director
field within the colloids and minimize the elastic energy.
The + end of particle 4 is attracted to the �1 ring on particle 1.

6 Conclusions

This work demonstrates that a complex topology can be
realised on a simple object with genus g = 0. The realisation
of complex topological states is made possible by geometric
shaping of rods/cylinders, which acts as a stabilising factor
preventing defect annihilation. This shaping can be done either
by twisting a rod into a helix or by making grooves in the rod.
Both ways we introduce an energy barrier between neighbour-
ing and oppositely charged topological defects, which prevents
their movement and subsequent annihilation. The twisting or
grooving topologically simple objects thereby provides a new
method for producing complex and reconfigurable topological
states. Our results indicate that by producing grooves on fibres
one could stabilize topological defects on presumably close to a
micrometer separation. Such a fibre could therefore carry a
huge number of oppositely charged defects, which could have
interesting consequences for colloidal interactions. From the
fundamental aspect, this work fully supports the Gauss–Bonnet
theorem,33 stating that the total topological charge of all

Fig. 10 Entangled grooved cylinders with an arbitrary number of grooves and defects. (a) Grooved cylinders viewed between crossed polarisers and red
plate added at 45 degrees angle. (b) Video frames showing the interaction of particle 1 with R = 3 and a single defect and particle 2 with R = 4 and three
topological defects: one anti-defect and two defects. The + end of particle 1 is attracted to the defect on particle 2 such that the defect on particle 1 is
entangled to the anti-defect on particle 2 resulting in the formation of a colloidal dimer. (c) Particle 3 with R = 2 and a single defect released from the
optical trap next to particle 2 is attracted to the defect on particle 2 from its + end. The defect on particle 3 is moved towards the anti-defect on particle 2,
as shown with blue arrows. (d) Another particle with R = 2 and a single defect is released from the laser trap next to particle 1. This particle travels a long
way downward, thereby minimizing the elastic energy of the system. The + end of particle 4 is attracted to the defect on particle 1 and a colloidal
tetramer is created.
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hedgehog defects on an object should be equal to g� 1, where g
is the genus of the particle.
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12 M. A. Gharbi, Da. Seč, T. Lopez-Leon, M. Nobili, M. Ravnik,
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27 M. Nikkhou, M. Škarabot and I. Muševič, Eur. Phys. J. E: Soft

Matter Biol. Phys., 2015, 38, 23.
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