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Light-controlled topological charge in a nematic
liquid crystal
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Creating, imaging, and transforming the topological charge1,2
in a superconductor3, a superfluid4,5, a system of cold atoms6,
or a soft ferromagnet7–9 is a di�cult—if not impossible—task
because of the shortness of the length scales and lack of
control. The length scale and softness of defects in liquid
crystals allow the easy observation of charges, but it is di�cult
to control charge creation. Here we demonstrate full control
over the creation, manipulation and analysis of topological
charges that are pinned to a microfibre in a nematic liquid
crystal. Oppositely charged pairs are created through the
Kibble–Zurek mechanism10,11 by applying a laser-induced local
temperature quench in the presence of symmetry-breaking
boundaries. The pairs are long-lived, oppositely charged rings
or points that either attract and annihilate, or forma long-lived,
charge-neutral loop made of two segments with a fractional
topological charge.

Topological charge1,2 is a conserved quantity that is associated
with point, string or loop-like topological singularities of physical
fields. It is assigned to topological defects in systems of various
natures and length scales, such as Abrikosov vortices in type-II
superconductors3, superfluid vortices4,5 in 3He and Bose–Einstein
condensates6, quasiparticles in the fractional quantum Hall
effect12, cold fermionic atoms in optical lattices13, and in field
theories14. Integer or fractional topological charge is important for
magnetization switching in soft ferromagnets7–9. In optical vortex
beams the topological charge is a measure of the phase singularities
of the optical field, and describes the orbital angular momentum
of light15. Topological defects in liquid crystals16,17 are the carriers
of topological charge, which are produced as transients by a rapid
pressure or temperature quench18,19 and made stable either by
colloidal inclusions20,21, or by confining the liquid crystal to cavities
of various geometries and surface properties. One such example is
liquid-crystalline droplets22,23.

Full control over the topological charge creation and manipu-
lation in a nematic liquid crystal (NLC) is achieved by using laser
tweezers to induce a thermal microquench of the NLC around an
inserted thin fibre (a few µm in diameter). We use a focused laser
beam to locally ‘melt’ and quench the NLC, which leaves behind
isolated topological defects that are stabilized by the fibre. The
defects appear in the form of singular points or closed loops, which
can be drawn, manipulated, cut and fused together with a laser
under an opticalmicroscope.We demonstrate a directmeasurement
of the topological charge using the charge-induced colloidal forces.
This makes inclusions in nematic liquid crystals an ideal system for
studying topological charge in soft matter.

The experiments were performed on a glass fibre, a few µm in
diameter, that was immersed in a thin layer of pentylcyanobiphenyl

(5CB) NLC, sandwiched between two glass plates. The NLC
molecules were aligned uniformly parallel to the rubbing direction
on the cell’s surfaces, whereas on the glass fibre they were
perpendicularly aligned.We use the absorption of the focused beam
of the laser tweezers to locally heat the NLC into the isotropic
phase (Fig. 1a). This creates a 100 µm diameter island of a molten
(isotropic) NLC, which is rapidly quenched by shutting off the light.
With no fibre inserted (Fig. 1a and Supplementary Movie 1), the
island undergoes a rapid phase transition that leaves behind the
phase interfaces a dense tangle of defects through a process similar
to the Kibble–Zurek mechanism of defect production in the early
Universe10,11,18. In less than a second, this tangle annihilates back into
the uniformly ordered ground state (vacuum state).

However, there is a marked change in the outcome of the
coarsening process when we perform the local melting experiment
with the fibre inserted, because the connectedness of the quenching
domain is changed (Fig. 1b and Supplementary Movie 2). After
long times we observe two remnant topological defects, which are
stabilized by the perpendicular alignment of molecules on the fibre,
namely the Saturn ring24 and the Saturn anti-ring, each having
an opposite winding number and topological charge1,2,17, thereby
preserving the charge neutrality. These rings are individually
inherently stable, cannot be annihilated separately and can be
arbitrarily moved with the tweezers. It should be noted that, in
the absence of surface anchoring at the fibre walls, each defect
would simply be allowed to pass through the NLC–fibre interface
and annihilate. If left free, they slowly attract through elastic
deformation of the NLC (Fig. 1c), slide towards each other along the
fibre and annihilate into a non-uniform, defect-free vacuum state.
By repeating the quench at different positions along the fibre, an
arbitrary number of ring–anti-ring pairs can be created (Fig. 1f).

The structures of the Saturn ring and anti-ring on a fibre are
modelled using the Landau–de Gennes (LdG) theory25 and shown
in Fig. 1d. Whereas the structure of the Saturn ring (with winding
number −1/2 and topological charge −1 is well known17,24, the
Saturn anti-ring with the opposite winding and topological charge
is not stable around a sphere. A single Saturn anti-ring is stable
inside a nematic droplet22,23, or in a carefully designed confinement
geometry26. The sign of the topological charge of the two rings
can be determined by probing the elastic deformation field around
the fibre, as opposite topological charges generally attract. As a
reference charge, we use a small test particle (Fig. 1e), treated for
perpendicular anchoring, which is by convention assigned a +1
charge for the particle and −1 charge for the accompanying Saturn
ring. Such a particle induces an elastic distortion that repels the
equally charged part of an elastic dipole and attracts the oppositely
charged part (Supplementary Movie 3).
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Figure 1 | Creation and annihilation of topological charges on a fibre. a, The NLC is heated into the isotropic phase by the strong light of the laser tweezers,
thus creating an isotropic island (Iso). At t=0 the light is switched o� and the NLC is quenched into the nematic phase (N). The dense tangle of defects
annihilates in less than a second. b, The NLC is quenched from the isotropic island surrounding a fibre. A pair of defects is created, each carrying an
opposite topological charge. c, If let free, the pair annihilates into the vacuum. d, LdG simulation of the Saturn ring and the Saturn anti-ring with opposite
charges and windings. e, The sign of the charge is tested using the repulsive force between like topological charges. f, An arbitrary number of ring–anti-ring
pairs can be created on a fibre. Images a–c,f were taken between crossed polarizers and the red plate, which shows the average molecular orientation in
di�erent colours.
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Figure 2 | Dynamics of charge annihilation on a fibre. a, A pair consisting of a Saturn ring and an anti-ring is annihilated on a fibre. The length of the fibre is
∼400 µm, the diameter is 8 µm and the cell thickness is 65 µm. b, The positions of the+ (red) and− (blue) Saturn rings as a function of time during pair
annihilation. The inset shows the relative velocity of the two rings. The open symbols are data from the experiment; the closed symbols (black) are data
from the numerical simulation. The red line is a linear fit to the blue data points. c, Numerical simulation of the ring and anti-ring attraction, showing the
director (yellow, vertical plane) and velocity fields (red, horizontal plane).

The annihilation of rings on a fibre was analysed in thick cells
(Fig. 2a and Supplementary Movie 4) by tracking their positions
(Fig. 2b). The relative velocity of the rings as a function of their
separation, d , shows a power-law dependence, ν ≈ 1/dα , with
α≈2.2±0.2, whereas the +1/2 ring is faster than the −1/2 ring,

ν+/ν−≈1.5. This is similar to previous experiments on topological
string attraction in nematic cells27,28, which also reported faster
dynamics of defects with positivewinding number. The experiments
in thick cells are compared against the ring dynamics, calculated
within the Beris–Edwards model of nematodynamics using the
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Figure 3 | Point charges and charge-neutral loops on a fibre. a, After inserting a glass fibre into a thick layer of the NLC, a gigantic Saturn ring with a−1
charge is created (i). The true image is on the left; the LdG simulation is on the right. This ring is cut by the tweezers (ii), creating a narrow region of a
topological soliton in between the two loops with opposite winding numbers (iii). The LdG simulation is shown in (iv). b, The second cut with the laser
tweezers creates a second soliton on the right, isolating a closed loop in between. This loop shrinks into the−1 monopole (iii). The LdG analysis
demonstrates the−1 monopole (hyperbolic hedgehog), with two closed loops on each side, with the winding numbers+1/2 (iv). c, The topological charge
of the−1 point defect is tested with an elastic dipole. The+1 part of the dipole is attracted towards the monopole on the fibre, identifying it as the−1
charge. d, A sequence of alternating charges is created on a fibre, attracting a series of dipolar colloidal particles. e, A topological soliton is seen as a
dark-shaded region below the fibre, and the LdG simulation is shown on the right (i). A microquench produces a long-lived charge-neutral loop, surrounded
by two solitons (iii). The LdG numerical simulation of a charge-neutral loop on a fibre is shown in (iv). f, The charge of the charge-neutral loop is tested by
the+1 end of the dipolar particle. This+ end is repelled from the left section of the loop towards the right section, demonstrating oppositely
charged sections.

hybrid lattice Boltzmann method29 in the one-elastic-constant
approximation and the material parameters of 5CB. The rings are
initialized at some distance, and left to annihilate. Figure 2c shows
snapshots from the simulation of the attraction and annihilation of
the Saturn ring and anti-ring pair. The calculated time dependence
of the +/− ring positions is shown in Fig. 2b, and is in good
agreement with the experiments.

The topology of the monopoles on a fibre becomes even richer
when the fibre is rotated by 90◦ and set perpendicular to the bulk
orientation of the NLC. Because a fibre in the NLC is topologically
equivalent to a sphere, characterized by the genus30 g = 0, a single
and gigantic−1/2 Saturn ring is observed, which encircles the fibre
all along its length (Fig. 3a and Supplementary Movie 5). This ring
can be cut and reshaped, using the light of the laser tweezers, into
an arbitrary number of isolated sections with different topologies
and charges. As an example, Fig. 3a shows how the gigantic Saturn
ring with winding number −1/2 is first cut into two loops by laser
tweezers. This cut locally modifies the winding number of one of
the forming loops (from −1/2 to +1/2) and creates a local non-
singular structure between the two loops—a distinctive topological
soliton31 (see also Supplementary Movie 5). After the loop on the

right is further cut into two separate loops (Fig. 3b), an isolated
−1/2 loop is formed that rapidly shrinks into a hedgehog with a−1
charge1,2. This charge attracts a colloidal particle in an elastic dipolar
state, where the particle carries a +1 charge and the hyperbolic
hedgehog a −1 charge (Fig. 3c and Supplementary Movie 6). By
further cutting either one of the loops, an alternating series of
positive andnegative point charges is created,which attract and bind
dipolar colloids (Fig. 3d).

Whereas cutting the loops generates charged monopoles, an
unusual topological entity is obtained by quenching the topological
soliton (Fig. 3e): a closed and long-lived loop forms, which is charge
neutral (Supplementary Movie 7). The far segments of this loop are
similar to halves of the oppositely charged loops, which is confirmed
using a test dipolar particle (Fig. 3f and Supplementary Movie 8).
When the positive part of the dipole is exposed to the loop, it is
repelled from the positive (left) and attracted towards the negative
end of the loop. This suggests the segments are topologically
independent and, in the sense of elastic interactions, act as localized
opposite fractional (half) charges, although only the loop as a whole
can be assigned a true topological charge. The LdG simulation of a
charge-neutral loop is shown in Fig. 4a.
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Figure 4 | Topological rules on a fibre. a, A charge-neutral loop has a−1/2 winding number on one side and a+1/2 on the other, with two transitions
through the twist profile. The colours indicate di�erent local structures of the loop. The yellow and blue isosurfaces indicate locations with a high bend and
splay, whereas green highlights the twist deformation29. Loops of this type are freely created and annihilated, as they do not contribute to the topological
charge. b, The fibre cross-section has three possible states: two states with an escaped disclination line of the winding number−1, with opposite escape
directions, and the symmetric states with two−1/2 disclinations on the top and bottom. c, The fibre can have any succession of the cross-sections from b.
The transitions between cross-sections carry the topological charge, which can be assigned to entire point defects and loops, as well as to loop endings.
The charge is closed in a box (two examples are shown), and the Gauss law measures the topological charge—that is, the number of escaped lines exiting
the box. The direction of the topological flux depends on the direction of the escape and is shown by arrows. The topological charges are marked.

Both the creation of alternating pairs of+1 and−1 point charges,
and the formation of charge-neutral loops are governed by a simple
set of topological rules. For the sections that are translationally
symmetric along the fibre, the cross-section is a two-dimensional
nematic, in which the winding number is a topological invariant.
Because the homeotropic fibre itself has the winding number +1,
additional disclinations are required to achieve zero total winding
number of the homogeneous director field far away from the fibre.
This can be achieved in three different ways: with two −1/2 discli-
nation lines on the top and bottom of the fibre, or by having a soliton
in the form of an escaped disclination with the winding number of
−1, running on the side of the fibre, with two possible directions of
escape (Fig. 4b). In the experiments we find all three configurations,
interspaced by point charges and end sections of disclination loops.

In analogy with electrostatic charges, the topological charge of
the loops and point defects can be determined by a Gauss law. In
our system, the Gauss integral1 is reduced to counting the number
of topological solitons carrying the ‘topological flux’ away from or
towards the defect, depending on the direction of the escape (arrows
in Fig. 4c). The solitons propagate the charge and can terminate
only at a topological defect. At each point, at most two of these
solitons can meet, so the only possible charges are the +1 and −1
point defects, and the +1/2 and −1/2 fractional charges, assigned
to the end sections of the loops (Fig. 4c). A whole loop can either
have same-signed ends and be topologically equivalent to one of
the point monopoles, or have opposite-signed ends, amounting
to a zero total charge (Fig. 4a). Close observation of the director
reveals that the loop ending with the +1/2 topological charge also
has a +1/2 winding number, and vice versa. This is specific to the
geometry of our fibre, whereas a general correspondence between
the winding numbers and the topological charges requires a careful
theoretical understanding32.

This work solves the long-standing problem of the controlled
creation, manipulation and analysis of topological charges in liquid
crystals. We have shown that any even number of topological
charges could be deliberately created on topologically simple
objects, which opens new routes to the design and assembly of
topologically complex colloidal structures. We believe that the
strategy developed here could be applied to topological charges in
spin systems, magnetic materials and charge-density waves33. More
broadly, this work demonstrates the sensitivity of the Kibble–Zurek
mechanism and the coarsening dynamics of entangled defects at
late times to the connectedness of space and symmetry-breaking
boundary conditions, which might have implications also on the
cosmological level. Finally, the nematic liquid crystal with inclusions
is a unique platform for studying the central topological invariants
of the ordering fields.
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