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Fractal nematic colloids
S.M. Hashemi1,2, U. Jagodič3, M.R. Mozaffari4, M.R. Ejtehadi2,5, I. Muševič1,3 & M. Ravnik1,3

Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is

repeated over multiple spatial or time scales. However, little is known about how fractal

stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here

we show geometry-induced formation of fractal defect states in Koch nematic colloids,

exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length

scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal

prisms of three successive fractal iterations by direct laser writing, and characterize their

coupling with the nematic by polarization microscopy and numerical modelling. Explicit

generation of topological defect pairs is found, with the number of defects following

exponential-law dependence and reaching few 100 already at fractal iteration four. This work

demonstrates a route for generation of fractal topological defect states in responsive soft

matter.

DOI: 10.1038/ncomms14026 OPEN

1 Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia. 2 Department of Physics, Sharif
University of Technology, P.O. Box 11155-9161, Tehran 1458889694, Iran. 3 Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, 1000
Ljubljana, Slovenia. 4 Department of Physics, University of Qom, P.O. Box 3716146611, Qom, Iran. 5 Center of Excellence in Complex Systems and Condensed
Matter (CSCM), Sharif University of Technology, Tehran 1458889694, Iran. Correspondence and requests for materials should be addressed to M.R. (email:
miha.ravnik@fmf.uni-lj.si).

NATURE COMMUNICATIONS | 8:14026 | DOI: 10.1038/ncomms14026 | www.nature.com/naturecommunications 1

mailto:miha.ravnik@fmf.uni-lj.si
http://www.nature.com/naturecommunications


S
elf-similar fractals are characterized by the repeating
pattern—for example, of its structure or dynamic
behaviour—over a broad range of spatial, time or other

scales. The concept of fractality is especially strong in describing
complex physical systems that exhibit irregular distributions,
for example, of its parts or constituents, and a degree of
self-similarity. Some well-known examples of fractals include
Brownian motion1, polymer networks2,3, aggregation growth
phenomena4,5, porous media2,6, glasses7, brain networks8,9,
structural details of genomes10 and complex dynamics in
human physiology11. Distinctly geometrical fractals are
characterized by the self-similarity of a system to a part of itself
across different length scales6,7, which in case of an ideally self-
similar fractal means that the system is invariant over all length
scales and has no characteristic length scale. Geometrical fractal
patterns of different scaling behaviours are generally determined
by the fractal dimension D, which quantifies the change in the
geometrical details of the fractal relative to the change in the
scales7. One of the widely studied geometrical fractal shapes that
can be introduced by a simple deterministic iterative method is
the Koch fractal, often associated with the shape of the ‘Koch
snowflake’12,13, for which all scaling laws and self-similarity
features are given by well-defined geometry-based rules. The
resolution of Koch fractals is determined by the fractal iteration,
which increases by 1 for each fractal refinement of the particle
shape. And it is by varying the fractal iteration of the Koch
construction that the response of surrounding material at
different length scales can be explored.

Fractal properties of liquid crystals were studied in different
contexts, including fractal morphology of polymer dispersed
liquid crystals14, fractal distribution and growth of bend-core,
calamitic and doped liquid crystal aggregations15–18, glass phases
of liquid crystals inside a porous medium with a random fractal
distribution19 and fractal-like disordering in smectic liquid
crystals20,21. However, all these studies were primarily focused
on understanding and explaining the bulk phase formation, and
not the actual microscopic response of the nematic order to a
fractal stimulus. Nematic fluids22 are characterized by the
orientational order of its constituents—typically rod-like or
disk-like molecules or particles—that is well responsive to
external stimuli, including electric and magnetic fields and
surface ordering fields, known as surface anchoring. Presently,
the major focus in liquid crystal research is on generation of
topological states of the nematic, such as topological handlebody
colloids23, topological defects as templates for molecular self-
assembly24, active colloids25 and knotted particles26, with main
motivation to use their inherent birefringence for novel highly-
tunable photonic materials and metamaterials27–29. In these
systems, topological characteristics of objects, and topology in
general, is explored as the prime route for designing complexity
of the structures, but much less focus is given to the fundamental
role of the geometry30. Therefore, a question arises as to what
extent an irregular and self-similar object, like a fractal shaped
particle, can imprint its geometric characteristic features into
topological states of the nematic anisotropic environment.

In this article, we demonstrate fractal nematic colloids,
revealing the response of anisotropic environment characterized
by the nematic ordering field to a fractal surface. Specifically, we
explore Koch-fractal-shaped particles of iterations 0 to 3 (and
numerically, up to 4) that are shown to induce formation of
fractal topological states. Experimentally, direct laser writing into
polymer is used for production and polarization microscopy for
characterization of these fractal nematic states, whereas theore-
tically, extensive finite-element modelling is applied, used also as
prediction tool for the experiments. The topological states are
characterized by exploring the topological defects pairs of

opposite charge, with their number increasing exponentially with
the fractal iteration. The fractal feature size relative to the nematic
correlation length is shown to affect the structure of defects,
especially the defect cores, where effective fusing of defect cores is
observed at fractal feature sizes comparable to the correlation
length, also leading to symmetry breaking of the nematic
orientational ordering. Finally, we introduce basic self-similarity
functions—local and global—that can be used to characterize
fractal self-similarity at different resolution levels in anisotropic
nematic environment, finding a window of 2–3 orders of
magnitude in length scales where good self-similar response of
nematic is observed.

Results
Construction of fractal nematic colloids. To explore the topo-
logical properties of a nematic field induced by a fractal geometry,
we choose the iteration of Koch fractals. We construct particles
with a Koch-fractal-shaped cross section and a thin wall of the
height h¼ lb/2, as shown in the schematic Fig. 1b. The zeroth
Koch iteration has a three-fold rotational symmetry axis and the
higher Koch iterations have a six-fold rotational symmetry axis.

Real Koch star particles were produced by using the 3D
two-photon direct laser writing technique (for more see
Supplementary Note 1; Supplementary Fig. 1). Scanning electron
microscopy images of the four iterations of the particles are
shown in Fig. 1a–d, demonstrating perfect shape and surface
smoothness of the polymer particles. The surfaces of the particles
were treated with N,N-dimethyl-N-octadecyl-3-aminopropyl
trimethoxysilyl chloride (DMOAP) silane (ABCR GmbH) to
create perpendicular (homeotropic) surface alignment of liquid
crystal molecules (Supplementary Note 1). The particles were
dispersed in a low birefringent liquid crystal mixture of CCN-47
(50%) and CCN-55 (50%) (Nematel GmbH), with the nematic to
isotropic transition at 65 �C. We enclose the nematic colloidal
dispersion in a 30 mm glass cell with strong planar and
unidirectional surface alignment. Because of opposing surface
alignment on particles and cell’s surfaces, the particles are
levitated by the force of elastic distortion in the middle of the cell,
as illustrated in Fig. 1e.

The Landau-de Gennes numerical modelling of the system is
based on the free energy expression for a nematic system by
Landau and de Gennes in the fully tensorial form ref. 22
(Supplementary Note 2; Supplementary Fig. 2). To numerically
minimize the free energy we use a custom-developed finite-
element method, which is capable of scanning the finest
structures of a surface with a high resolution. In finite-element
method, a surface with its exact mathematical meaning
(zero thickness) can be introduced and accordingly the surface-
anchoring condition can be unambiguously determined. This
makes the finite-element method a powerful technique for the
numerical study of systems containing finely-structured and
complicated surfaces and is crucially needed in modelling of our
fractal colloids. The sharp edges are numerically rounded in
order to achieve a more efficient numerical minimization and
more realistically reproduce the direct laser written real particles
(for more on surface sharpness, see Supplementary Note 2;
Supplementary Fig. 3).

Nematic dispersions of Koch star colloidal particles in planar
cells were observed with a polarization microscope and the laser
tweezers were used to trap, move and manipulate the particles
and its topological defects (Supplementary Note 3)31,32.

Characterization of nematic field response to fractal surface.
The experimental images of Koch-star nematic colloids are
presented in Fig. 2a–f. In the isotropic phase (panels I of
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Fig. 2a–f) the Koch particles are freely floating in the isotropic
melt and could be rotated by liquid flow. Optical artefacts due to
diffraction of light from index miss-matching of the Koch star
polymer (refractive index 1.5) and the average refractive index of
the isotropic phase (1.52) are visible and help to discriminate
between the real topological defects in the nematic phase and
optical artefacts.

Panels II of Fig. 2a–f show the Koch star particles at room
temperature, as observed between crossed polarizers. The zero-
iteration Koch particles preferentially orient into two possibilities,
that is, with one side parallel or one side perpendicular to the
rubbing direction, as shown in panels II to IV in Fig. 2a,b. For the
parallel orientation, there are two defects located in the middle of
this side, whereas for the perpendicular orientation, there is one
defect next to one of the inside corners. Due to elastic repulsion
from the confining plates these particles levitate in the middle of
the cell and do not tilt or sediment. From the polarized image of
this particle in Fig. 2a, II (and similarly also for the particle in
Fig. 2b, II) one can clearly see strong director distortions in the
corners of the particles. By rotating the analyser at fixed polarizers
(Supplementary Fig. 4) one can clearly resolve that defects in the
corners are actually pairs of defects with opposite topological
winding and charge. Each of the three pairs of defects in each
corner of the triangle therefore compensates the winding, giving
total winding zero, as expected for the total charge of a torus. One
should remember that any iteration of the Koch star particles is
topologically equivalent to the torus. Toroidal particles have a
genus g¼ 1 and it is known from Gauss–Bonnet theorem24 that a
colloidal handlebody with genus g carries defects with a total
topological charge of ±(1� g). All Koch star particles should
therefore have an even number of topological defects which
mutually compensate their winding and charge to keep the total
charge of any Koch star particle zero at all times.

The first iteration Koch star particles also show two different
orientations in the planar cell, rotated at j¼ 0 and j¼ 30�

relative to the rubbing direction as shown in Fig. 2c,d, respectively
(and Supplementary Fig. 5). In both cases, polarized and red-plate
images show strongly distorted director in the inner and outer
corners of the Koch particle, which is the signature of topological
defects. By using the laser tweezers it is not possible to detach any
defect line (from modelling seen to be running all along the edge
of the particle); however, one is able to pull the defects away from
the surface. By counting the number of defects, one can see in
Fig. 2c, II; c, III eight pairs of defects in the corners, four inner
corners do not show any defect. The other configuration of the
first iteration Koch particle shown in Fig. 2d, II; d, III, shows six
pairs of defects.

The second iteration Koch star particles show again two stable
orientations in the planar nematic cell, as shown in Fig. 2e,f and
Supplementary Figs 6 and 7. The configuration in Fig. 2e occurs
with 70% probability and the symmetry axis of the Koch particle
is parallel to the overall orientation of the nematic. Defects of the
second iteration Koch particles are different for these two
different orientations. They are identified by taking polarized
images of the particle at different orientations of the analyser,
where the polarizer is kept perpendicular to the overall nematic
director, thus exciting the ordinary ray in the cell. Supplementary
Figs 6 and 7 show detailed analysis of defects of the second-
iteration Koch particles with orientation equal to that in Fig. 2e,f.
The j¼ 0 orientation of the second-iteration Koch-star particles
(Fig. 2e) shows 28 compensated defect pairs. As it is quite easy to
observe point defects (or projections of line defects onto the
imaging plane), it was not possible to detect any disclination line,
running along the upper and lower edge of the first and second-
iteration Koch particles. These lines must be depressed into the
particle or strongly pinned to the surface, being therefore
inaccessible to grabbing by the laser tweezers. The numerical
modelling shows that the general 3D morphology of the
topological defects for all the Koch iterations 0 to 3 is an
integrated combination of the disclination lines with winding
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Figure 1 | Koch-star fractal particles. (a–d) Scanning electron microscopy (SEM) images of the zeroth to the third iteration of the Koch star particles that

are direct laser-written into a photosensitive polymer by the two-photon laser-induced polymerization (Photonic Professional system by Nanoscribe

GmbH). The thickness of the sides of all Koch particles is 0.6mm, the height is 8mm and the overall size is 20mm. The parameters lt and lb are the side

lengths of the smallest and largest equilateral triangles that are used in the geometry construction based on the Koch iterative construction rule. The

parameter h is the particle height. (e) Schematic view of the Koch particle of the second literation in a planar nematic liquid crystal cell. The rubbing

directions specify the orientation of LC molecules at the cell surfaces.
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numbers þ 1/2 and � 1/2 that join together in a specific order, as
shown in Fig. 2a, IV–f, IV and Supplementary Fig. 8, and
commented in Supplementary Note 4. Good agreement between
experiments and modelling is found. Notably, the exact 3D
morphology of the defects—especially at the top and bottom of

the particle—is affected by the sharpness of the particle edges and
the exact orientation of the particle (Supplementary Fig. 9), as the
edges can pin or even locally suppress sections of the defect loops.
To generalize, the generation of topological defects and the
corresponding topological states are the result of an interplay
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Figure 2 | Nematic topological states stabilized by fractal Koch-star colloidal particles. (a, I–f, I) Koch-star particles in the isotropic phase of the CCN

mixture at 70 �C in unpolarized light. (a, II–f, II) The same particles as in panels I, now observed between crossed polarizers and at room temperature. The

rubbing direction, indicating the far-field planar orientation of the nematic is shown by double-headed arrows in (a, II–IV). Defects are recognized as point

regions in the optical image, surrounded by rapidly varying colour and intensity of the transmitted light, indicating strong director distortion. (a, III–f, III) The

same particles as in a, II–f, II, now viewed between crossed polarizers and red plate added at 45�. Different colours are due to different in-plane orientations

of the nematic molecules. (a, IV–f, IV) Landau-de Gennes (LdG) numerical modelling illustrating contour plots of the scalar order parameter in the mid-

plane of the particles with lb/x¼ 100 where x is the correlation length of the liquid crystal molecules in the x–y coordinate plane containing the coordinate

center. The calculated director field in the x–y plane of the contour plots is also superposed.
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between geometry and topology, where the fractal surface
modulations induce local formation of defect pairs to minimize
the elastic distortion of the nematic field.

Topology of fractal defect states. Topologically, the considered
Koch particles are equivalent to tori, thus having zero total
topological charge24. Having immersed the particles into a
uniformly aligned nematic field (that is, planar nematic cell),
therefore, also the net topological charge of all the surrounding
defect structure must be equal to zero. Indeed, observing the
structure of defects, they are a complex three-dimensional
topological structure which effectively consists of multiple
mutually fused defect loops that engulf the particle (Supple-
mentary Fig. 8). A quantitative relation between the fractal
surface and the generation of topological defects can be
established by observing the nematic profile in a selected
(x-y) plane that intersects the fractal-modulated surface, as
shown in Fig. 3. In this cross-section, which effectively, can be
considered as a quasi-two-dimensional nematic, the director is
roughly fully in-plane and the topological defects are seen as
two-dimensional þ 1/2 and � 1/2 winding number point
defects (but are actually cross-sections, which effectively, can
be considered as a quasi-two-dimensional nematic, of the

three-dimensional defect loop). These þ 1/2 and � 1/2 defects
are all observed to emerge in mutually compensating pairs, in
all fractal iterations of Koch particles, which assures
homogeneous nematic far-field (Fig. 3a–c).

By considering the geometric parameters of the Koch surface,
especially the total number of edges which grows as 3� 4N with
iteration N (N¼ 0,1,2,..), the number of the defects pairs for
given iteration N can actually be determined as a rule, if self-
similarity of the nematic response upon changing the iterations is
assumed. Accordingly, we find that the number of defect pairs n
for orientation j¼ 0 of Koch particles is equal to
n¼ð3þ 5

PN
i¼1 4

ði� 1ÞÞ¼ 4
3 þ 5

3 ð4NÞ (for N40; and n¼ 3 for
N¼ 0), and for orientation j¼ 30� of the particles
n¼ð6þ 9

2

PN
i¼2 4

ði� 1ÞÞ¼ 3
2 ð4

NÞ (for N41; n¼ 3 for N¼ 0 and
n¼ 6 for N¼ 1), growing exponentially with iteration N. The
number of defect pairs observed in experiments (for iterations
N¼ 0–2) and in numerical modelling (for iterations N¼ 0–4) is
shown in Fig. 3d and is in exact agreement with the analytically
predicted formula. We should stress that this observed exponential
growth of the number of defect pairs actually ends when fractal
feature size becomes comparable to the nematic correlation length,
as individual defect cores do not form anymore but rather larger
regions of reduced degree of order start to emerge.
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The role of particle size and fractal-self-similarity. The fractal
topological states depend on the size of the Koch cavities, as
shown in Fig. 4a where the particle size (that is, edge length lb)
relative to the nematic correlation length lb/x is in our study the

main size parameter as the surfaces are taken in the strong (but
finite) anchoring regime with surface extrapolation length22 xS
generally shorter than lb and x (xSB1 nm). Nematic correlation
length is the elementary scale of nematic when considered at the
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mesocopic level and describes the ratio between elasticity and
bulk order, effectively scaling as x /

ffiffiffiffiffiffiffiffiffi
L=A

p
, where L is the

nematic elastic constant and A the bulk ordering term21. For large
particle or fractal feature sizes, the structures are characterized by
the formation of pronounced individual defects, with well-
determined core regions of reduced nematic degree of order. By
increasing the fractal iteration, new defect-antidefect pairs form
and the complexity of the fractal nematic pattern increases. The
regime of large lb/x is actually the regime of the presented
experiments and calculations shown in Figs 2 and 3. However,
when the particle size (lb) or the fractal feature size (lt) become
comparable to the nematic correlation length (bottom two rows
in Fig. 4a), the molten cores of nematic defects effectively start to
overlap, and can fuse into larger regions with reduced nematic
degree of order, for example, see large regions of low degree of
order in Fig. 4a at N¼ 3, lb/x¼ 9 (in blue). Effectively, by
increasing the fractal iterations, the fractal surfaces start to
impose an overly complex frustration on the nematic order, and it
becomes locally more energetically favourable for the nematic to
reduce degree or order and approach isotropic phase and change
the symmetry of ordering within the fractal cavity (see Fig. 4b),
which is a process that could be interpreted as fractal nematic
melting. Opposite process is known in other systems known as
capillary condensation where nematic forms within the isotropic
background due to the stabilization from the surface33. Experi-
mentally, the observed fractal nematic melting could possibly be
realized in systems where geometrical feature sizes can be made of
similar size order as the nematic correlation lengths, such as in
colloidal nematic liquid crystals34.

The fundamental feature of fractals is self-similarity at different
length-scales and the Koch geometry (without nematic) is
infinitely self-similar upon increasing the fractal iteration.
However, for the nematic response—that is, the director and
nematic degree of order- we find that they are self-similar only to
some approximation and within distinct range of scales. The
relative self-similarity of nematic surrounding Koch particles of
fractal iterations N and M (Fig. 4c) is quantified by introducing
two self-similarity functions (that is, overlap functions or norms):
for the director sim N;Mð Þ

dir ðrÞ¼ðn Nð Þ rð Þ� n Mð Þ rð ÞÞ2¼ðcosyðN;MÞðrÞÞ2,
where y(N,M) is the relative angle between the directors in
iterations N and M at position r, and for the nematic degree of
order sim N;Mð Þ

S rð Þ ¼ 1� S Nð Þ rð Þ� S Mð Þ rð Þ
�� ��=Seq (Seq is the bulk

nematic degree of order). The two self-similarity functions are
constructed to be equal to one if the patterns at different fractal
iterations are locally self-similar and become zero if not
(for more, please see Supplementary Note 2). The self
-similarity functions are calculated for the selected regions,
comparing iteration pairs (N¼ 1, M¼ 2), (N¼ 1, M¼ 3), and
(N¼ 2, M¼ 3), as shown in Fig. 4c. The patterns of nematic
director and nematic degree of order emerge to be well similar
over the repeating fractal region, except for close to defect cores
where differences at the length scale of the nematic correlation
length are observed. Especially, the defects change location
relative to the edges. As an even more focused measure of the
self-similarity we integrate the self-similarity functions over the
considered regions O, SIMðN;MÞ

dir ¼ð1=OÞ
R
simðN;MÞ

dir ðrÞdO and
SIMðN;MÞ

S ¼ð1=OÞ
R
simðN;MÞ

S ðrÞdO, allowing us to simply quantify
the relative self-similarity of different iterations, as shown in
Fig. 4d. Self-similarity can be further analysed by introducing
various forms of correlation functions (Supplementary Note 5;
Supplementary Fig. 10).

Discussion
The general deviation of the nematic response from the full self-
similarity emerges to be at the level of several per cent, and

decreases with either small or large fractal cavity sizes lb/x, which
can be explained by two main mechanisms: (i) the presence of the
nematic correlation length and (ii) the fundamental uniaxial
ordering of the nematic. On one hand, the nematic correlation
length affects the exact structure and position of the defect cores;
therefore, the nematic director and degree of order are well self-
similar only in the regime of either large or small Koch cavities
relative to the correlation length, where defect cores are either
large or small, subjected to the condition that surface-anchoring
regime is not notably different at all these different cavity length
scales. Changing the nematic correlation length—that is, either
changing the material itself or varying parameters like tempera-
ture- will shift the effective window of self-similarity to different
physical length scales. On the other hand, the uniaxial ordering
breaks the symmetry of the director profiles within the fractal
arms (for example see Fig. 4b) making some arms different at
different fractal scales and some not. This local loss of self-
similarity in distinct fractal regions is the consequence of inherent
long-range nematic elasticity which causes that the difference in
the profiles originating from the roughly uniform nematic region
(in our case in the center of the cavity) proliferates into multiple
fractal regions and iterations. Possibly, such inherent imprinting
of uniaxial order and loss of symmetry could be enhanced or
suppressed by using fractal patterns of different geometry. Also,
interesting to explore would be the role of the surface anchoring
and its effects on the self-similarity. Any variation of the surface-
anchoring strength would introduce another length scale into the
system—the surface extrapolation length—leading to further
complex interplay between surfaces, bulk nematic elasticity and
the fractal geometry.

In summary, we have demonstrated fractal nematic colloids as
novel materials, which are a distinct realization of the coupling
between the fractal order and uniaxial nematic vector-type
ordering. Koch colloidal particles are produced via nano-printing
technique in the form of hollow prisms with fractal belt surface
and used as inner and outer confinement for the nematic field.
The formation of fractal topological states characterized by locally
compensating pairs of topological defects is shown, as governed
by the local geometry of the fractal surface and its iteration, and
less by the topology. This is analogous to the recent observation
of topological states on a fibre with genus g¼ 0, which can carry
any odd number of topological defects with a total charge of � 1
(ref. 35). The number of fractal generated defect pairs are shown
to follow exponential-law series, reaching already B100 defect
pairs at fractal iteration 3. The ratio between the fractal feature
size and the nematic correlation lengths is shown to crucially
affect the exact response of the nematic, also conditioning the
size-window and number of succeeding fractal iterations that
actually can be realized with given materials. Basic self-similarity
functions between different fractal iterations are introduced for
the nematic director and the degree of order, and used to quantify
the fractal self-similarity of the nematic pattern. More broadly,
this work demonstrates the response of effectively elastic vector-
type fields to fractal stimulus or surfaces, resulting in a broad
series of topological states – that is, field conformations governed
by complex fractal self-similar patterns of topological defects-
which are stabilized by the fractal geometry. Finally, this work is a
contribution towards novel stimulus responsive soft materials and
can prove relevance in diverse fields ranging from confined active
nematic systems to multi-scale photonics and lasing.

Methods
Experiments. Koch particles were produced by direct laser writing using a com-
mercially available Photonics Professional (Nanoscribe Gmbh) and a photoresistive
gel-like photoresist IPG (Nanoscribe). The particles were later treated with an
aqueous solution of DMOAP (ABCR GmbH), which enforces strong homeotropic
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anchoring on the surfaces of the Koch nematic colloids. The colloidal particles were
then immersed in a low birefringent mixture of CCN 47 (50%) and CCN 55 (50%)
(Nematel GmbH), which is nematic at room temperature. The suspension was then
placed in a glass cell of thickness 30 mm with strong planar anchoring at the
boundaries. The system was then observed using polarized optical microscopy,
where the angle of the analyser with respect to the polarizer was changed, thus
improving the contrast of the disclination lines in the images.

Numerical modelling. The numerical modelling of the system was performed
using the Landau-de Gennes free-energy expression which is written in powers of a
local symmetric traceless tensor order parameter, Qij, and its derivatives, qkQij. The
tensor order parameter was used to characterize nematic orientational order about
the local average molecular directions, called director, n, and the local degree of
molecular order along the directors, called nematic degree of order S. The total
free-energy functional is written as follows

F ¼
Z
bulk

dV
A Tð Þ
2

QijQji �
B
3
QijQjkQki þ

C
4

QijQji
� �2 þ L

2
@kQij
� �2� �

þ
Z

Surface

dA
W
2

Qij �Qs
ij

� 	2
� �

;

ð1Þ

in which A, B and C are material dependent parameters and A is also taken to be
linearly dependent on temperature. L is the elastic constant andW is the anchoring
constant. To impose homeotropic anchoring condition on the colloidal surfaces we
take Qs

ij ¼ Seqðninj � dij=3Þ in which n denotes normal vectors on the colloidal
surfaces. In the absence of external constraints there is a uniform bulk nematic with

the equilibrium scalar order parameter equal to Seq ¼ B
4C ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24A Tð ÞC

B2

q
Þ and

the correlation length of the liquid crystal in this mean field theory is given as

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
AðTÞ� 2

3BSeq þ 2CS2eq

q
. The following material parameters are used: A¼ � 0.07

� 105 Jm� 3, B¼ 3.6� 105 Jm� 3 C¼ 3.0� 105 Jm� 3, L¼ 1.0� 10� 11N
W¼ 1.0� 10� 2 Jm� 2. On the basis of these parameters we have x¼ 10 nm and
Seq¼ 0.653. The length scale of the fractal colloids and cavities is rescaled as lb/x
and takes values in the range from 9 to 100. The free energy is numerically
minimized by a finite-element method36,37.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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28. Muševič, I. Liquid-crystal micro-photonics. Liq. Cryst. Rev. 4, 1–34 (2016).
29. Khoo, I. C. Nonlinear optics, active plasmonics and metamaterials with liquid

crystals. Prog. Quant. Electron. 38, 77–117 (2014).
30. Alexander, G. P., Chen, B. G. G., Matsumoto, E. A. & Kamien, R. D.

Colloquium: disclination loops, point defects, and all that in nematic liquid
crystals. Rev. Mod. Phys. 84, 497–514 (2012).

31. Jampani, V. S. R. et al. Colloidal entanglement in highly twisted chiral nematic
colloids: twisted loops, Hopf links, and trefoil knots. Phys. Rev. E 84, 031703
(2011).

32. Nych, A. et al. Chiral bipolar colloids from nonchiral chromonic liquid crystals.
Phys. Rev. E 89, 062502 (2014).

33. van Roij, R., Dijkstra, M. & Evans, R. W. Interfaces, wetting, and capillary
nematization of a hard-rod fluid: Theory for the Zwanzig model. J. Chem. Phys.
113, 7689–7701 (2000).
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