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ABSTRACT
Physical studies on mixture of calamitic and discotic nematic liquid crystals are meagre although
they are potential for optimising physical properties. Here, we report experimental studies on the
phase diagram and physical properties of mixtures of ambient temperature discotic and calamitic
nematic liquid crystals. A substantial decrease in several physical properties such as birefringence,
dielectric anisotropy and elastic constants are observed with increasing wt% of discotic com-
pound. On the other hand a large increase in the rotational viscosity is observed. Based on the
experimental results a simple model of mutual orientation of the rod-like and disc-like molecules
is proposed.
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1. Introduction

Liquid crystals (LCs) used in display devices are mostly
the calamitic nematic, which are composed of rod-
shaped molecules. For a desired electro-optic response,
the physical properties are required to be optimised,
and that is usually achieved in the mixture of several
single component liquid crystals. Here we concentrate
on the studies of mixture of a calamitic and a discotic
liquid crystals, which are interesting from several
aspects. First, they have the opposite sign of the bire-
fringence and dielectric anisotropy, which makes it
possible to tune the electro-optic response and

elasticity. Second, there may be a region of immisci-
bility of rod-like and disk-like nematics, resulting in a
liquid dispersion of one phase in another. This should
result in a dispersion of microdroplets of one liquid
crystal phase in another liquid crystal phase, which
could be of great interest for applications in topological
micro-photonics [1] and for the fundamental studies of
topology in liquid crystals. In such a liquid crystal–
liquid crystal dispersion, individual nematic droplets
might function as tunable optical microcavities [2,3]
and microlasers [4], which could be elastically bound
by topological defects [5,6] of the other nematic carrier
fluid (continuous phase). Third, immiscible liquid
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crystalline phases could provide a novel testbed for
studying topological defects in both phases, as well as
their interrelation across the interfaces. Understanding
and tailoring of mixtures of rod-like and disc-like
nematic materials is therefore not only of high interest,
but could also lead to new research directions.

There are a very few reports on the phase diagram
and physical properties of mixture of calamitic and
discotic nematic liquid crystals. For example, Pratibha
et al. experimentally studied the phase diagram and
defect structure in the binary mixture of a calamitic
and a discotic nematic LCs [7,8]. Apreutesei et al.
experimentally showed a complete miscibility of disc-
like and rod-like compounds [9]. Andrzej et al. theo-
retically studied the elastic constants in the binary
mixture and reported a discontinuous change of elastic
anisotropy from disc-like to rod-like properties [10]. A
possibility of getting biaxial nematic and smectic
phases in such binary systems was discussed by G J
Vroege [11]. Recently, Parthasarathi et al. measured
several physical properties of binary mixtures of a
calamitic and a columnar discotic liquid crystals [12].
They also observed an anchoring transition driven by
short-range ordering in the calamitic-discotic compo-
sites. In the above mentioned reports (experimental),
the compounds studied exhibit nematic phase above
the ambient temperature. To the best of our knowl-
edge, there are no reports on the phase behaviour and
physical studies on the mixture of ambient temperature
discotic and calamitic nematic LCs. In this paper, we
report experimental studies on the phase diagram, and
physical properties such as birefringence (Δn),
dielectric anisotropy (Δ�), curvature elastic constants
(K11 & K33) and rotational viscosity (γ1) of the mixture
of a calamitic and a room temperature discotic nematic
liquid crystals.

2. Experimental

The experimental cells were made of two indium–tin–
oxide (ITO)-coated glass plates with circularly pat-
terned electrodes. These plates were spin coated with
polymide AL-1254 and cured at 180°C for 1 hour and
rubbed antiparallel way for homogeneous alignment of
the sample. Cells were made by placing two plates
together such that the active electrode area overlaps.
The cell gap was controlled by glass-bead spacers of
average diameter of 8 μm. The thickness of the empty
cell was measured within ± 1% accuracy by an inter-
ferometric technique using a spectrometer (Ocean
Optics, HR-4000). The empty cell was heated and filled
with the sample in the isotropic phase. The phase
transition of the samples was observed using a

polarising optical microscope (OLYMPUS BX51) and
a temperature controller (Instec, mK 1000). The tem-
perature-dependent birefringence of a planar cell was
measured by using a phase modulation technique [13]
with the help of a Helium–Neon laser, a photoelastic
modulator (PEM-100) and a lock-in amplifier. The
perpendicular component of the static dielectric con-
stant (�?) was measured in a planar cell and the parallel
component of the dielectric constant (�k) was measured
by applying a sinusoidal voltage with a frequency of
10 kHz from 0.02 to 20 V in steps of 0.02 V using a
LCR meter (Agilent E4980A). The linear part of the
dielectric constant is plotted against 1/V and extrapo-
lated to 0 (1/V = 0) to obtain � k at various tempera-
tures. The splay elastic constant (K11) was measured
directly from the Freedericksz threshold voltage (Vth)
of the voltage dependent retardation data using the

relation, K11 ¼ �0 Δ � ðVth=πÞ2, where Δ� ¼ � k � �?, is
the dielectric anisotropy. The bend elastic constant
(K33) was obtained from the fitting of voltage depen-
dent optical retardation with theoretical variation
[14–17]. The rotational viscosity (γ1) was measured in
a planar cell by a phase-decay-time measurement tech-
nique [18,19].

3. Results and discussion

The sample E-18 (a room temperature calamitic nematic
mixture) exhibits the following phase transitions: Cr. 10°
C N 60°C I. The discotic nematic was synthesised in our
laboratory (Figure 1(a)) and it has the following phase
transitions: N 83°C I. It also exhibits a glass transition
much below the room temperature [20,21]. We prepared
three different mixtures with increasing concentration of
discotic compound, namely; E-18+disc(2.5 wt%), E-18
+disc(5 wt%), E-18+disc(7.5 wt%). Physical appearance
of the mixtures is shown in Figure 1(b) and the phase
diagram is shown in Figure 1(c). From turbid and white,
it becomes brownish in colour with increasing wt% of
discotic compound. In pure E-18, there exists an isotro-
pic–nematic coexistence (I + N) range of approximately
3°C and this range increases with increasing wt% of
discotic compound. In case of mixture with 7.5 wt%
discotic compound, while cooling, the I + N coexistence
range exists nearly up to 30°C. Below this temperature, it
exhibits a monodomain (no coexistence) nematic sample.
During heating, the coexistence reappears at 43°C. Thus,
larger temperature range of monodomain nematic is
obtained during heating. Hence we performed all the
measurements while heating and the physical measure-
ments in the I + N coexistence region are excluded.

The temperature variation of birefringence (Δn) of
E-18 and various mixtures is shown in Figure 2(a). The
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birefringence of E-18 is large and positive whereas in
discotic nematic it is large but negative. For example, at
room temperature, in E-18, Δn ’ 0:21 and this is con-
sistent with the previous measurement [22]. In pure
discotic nematic, at room temperature, Δn is negative
and large ( ’ �0:2) [23]. In the mixtures, Δn decreases
with increasing wt% of discotic compound. For example,
at a fixed temperature (e.g. T � TNI = −26°C), Δn of the
mixture (E-18 + 7.5 wt%) decreases by 13% compared to
the pure E-18. This suggests that the mutual orientation
of the rod and disc-like molecules is such that the
polarisability anisotropies are antithetically related.

The variation of dielectric anisotropy (Δ�) of various
mixtures as a function of shifted temperature is shown

in Figure 2(b). In pure E-18, Δ� is positive and relatively
large whereas in discotic nematic it is small and negative
[23]. For example, at room temperature in E-18, Δε ¼
13:5 and in pure discotic nematic, Δ� ¼ �0:18 [23]. It is
observed that Δε decreases with increasing wt% of dis-
cotic compound. For example, at a fixed temperature
(T � TNI = −30.5°C), Δ� of the mixture, E-18 + 7.5 wt%
decreases by 12% compared to the pure E-18. Though
Δ� of pure discotic compound is very small and nega-
tive, it has a significant contribution in reducing the
dielectric anisotropy of the mixtures.

The optical phase difference (Δϕ) of the samples was
measured as a function of applied voltage to measure
splay (K11) and bend elastic constants (K33)

Figure 2. (colour online) Variation of (a) birefringence (Δn) and (b) dielectric anisotropy (Δ�) as a function of shifted temperature.
Continuous lines are drawn as a guide to the eye. The shaded region indicates the nematic–isotropic (N + I) coexistence range. The
downward arrows indicate the decrease of the respective quantities with increasing wt% of the discotic compound.

Figure 1. (colour online) (a) Chemical structure of the disc-like molecule. (b) Physical appearance of the samples with increasing wt
% of the discotic compound in E-18. (c) Phase diagram of the mixtures along with a few representative photomicographs. The
transition temperatures are measured while heating the samples from the room temperature.
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simultaneously. The temperature variation of K11 and
K33 is shown in Figure 3. K33 is always greater than K11

and both the elastic constants decrease with increasing
wt% of discotic compound. At room temperature,
(T � TNI= −30°C), K11 and K33 decreases by 25% and
30%, respectively. According to the mean-field theory,
Kii / S2 / Δn2. Since Δn decreases by about 13% (see
Figure 2(a)), the decrease of the elastic constants is
consistent with the prediction of the mean-field theory.
However, it may be noted that the relative decrease of
K33 is slightly larger (about 5%) than K11. This is due to
the fact, that in pure discotic nematic, the elastic ani-
sotropy is negative i.e. K33 is less than K11 [23], and this
is opposite to the behaviour observed in pure E-18.

We also measured the rotational viscosity (γ1) of the
mixtures with temperature (see Figure 4). γ1 increases
with increasing wt% of the discotic compound. For
example, near the room temperature (T � TNI =−30°
C), γ1 of the mixture, E-18 + 7.5 wt% is 73% larger
than that of the pure E-18. The rotational viscosity is
given by; γ1 ¼ τoK11π2=d2, where d is the sample thick-
ness and τ0 is the relaxation time. In the mixtures, γ1
increases significantly in spite of the decrease of K11. So
the increase of γ1 is mainly due to the increase of
relaxation time of the system. This is expected as the
relaxation time of the pure discotic nematic is very
large [23]. The birefringence, dielectric anisotropy
and the elastic properties clearly suggest that the
plane of the disc molecules is parallel to the director
as shown schematically in Figure 5.

4. Conclusion

In conclusion, we have determined the phase diagram,
and measured several physical properties such as bire-
fringence, dielectric anisotropy, curvature elastic con-
stants and the rotational viscosity of mixture of E-18
and a discotic nematic liquid crystals. We find rather
broad temperature range of coexistence of the isotropic
and nematic phases. The temperature range of
nematic–isotropic coexistence increases with increasing
wt% of discotic nematic compound. At room tempera-
ture, with a small (7.5 wt%) addition of discotic com-
pound, the birefringence and dielectric anisotropy
decreases by about 13%. The splay and bend elastic

Figure 3. (colour online) Variation of splay (K11) and bend (K33)
elastic constants of the mixtures as a function of shifted tem-
perature. Continuous lines are drawn as a guide to the eye. The
downward arrows indicate the decrease of the respective
quantities with increasing wt% of the discotic compound.

Figure 4. (colour online) Variation of rotational viscosity (γ1) of
the mixtures as a function of temperature. The upward arrow
indicates the increase of γ1 with increasing wt% of the discotic
compound.

Figure 5. (colour online) Schematic representation of mutual
orientation of rod-like and disc-like molecules in the nematic
phase.
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constants decrease by 25% and 30%, respectively. On
the other hand rotational viscosity increases by about
73%. We have shown that the physical properties of the
calamitic nematic liquid crystals can be changed sig-
nificantly by adding a small amount of discotic nematic
compound. This is therefore a very efficient method of
tuning the electro-optic parameters of nematic mix-
tures. The experimental results suggest that the planes
of the disc-like molecules are oriented parallel to the
nematic director. Future studies should focus on the
high concentration range of discotic component in the
phase diagram (Figure 1), where a coexistence region
of two immiscible nematic phases was observed in
preliminary experiments above 10 wt% of discotic
component.
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