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Liquid-crystalline half-Skyrmion 
lattice spotted by Kossel diagrams
Jun-ichi Fukuda   1,2,3, Andriy Nych4,5, Uliana Ognysta   4,5, Slobodan Žumer5,3 & 
Igor Muševič5,3

Skyrmions are swirl-like topological entities that have been shown to emerge in various condensed 
matter systems. Their identification has been carried out in different ways including scattering 
techniques and real-space observations. Here we show that Kossel diagrams can identify the formation 
of a hexagonal lattice of half-Skyrmions in a thin film of a chiral liquid crystal, in which case Kossel 
lines appear as hexagonally arranged circular arcs. Our experimental observations on a hexagonal 
lattice of half-Skyrmions and other defect structures resembling that of a bulk cholesteric blue phase 
are perfectly accounted for by numerical calculations and a theoretical argument attributing strong 
reflections yielding Kossel lines to guided mode resonances in the thin liquid crystal film. Our study 
demonstrates that a liquid crystal is a model system allowing the investigation of topological entities 
by various optical means, and also that Kossel techniques are applicable to the investigation of thin 
systems with non-trivial photonic band structures including topologically protected optical surface 
states.

Skyrmions are not real particles with distinct physical properties, but coreless solitonic field excitations that 
behave like a particle. Skyrmions were originally proposed to explain the emergence of particle-like entities in a 
continuous field theory1. Now Skyrmions have been shown to exist in a wide variety of condensed matter systems 
characterised by vectorial order parameter(s), including two-dimensional electron gases2–4, spinor Bose-Einstein 
condensates5,6, superfluid He3-A phase7–9, and chiral liquid crystals10–16. Not only have Skyrmions attracted inter-
est from an academic point of view as a realisation of non-trivial topological entities that can be classified by 
second homotopy groups, those appearing in chiral ferromagnets17–26 have been extensively studied because of 
the possibility of practical applications in high-density information storage and manipulation of electrons27,28.

Skyrmions in liquid crystals, the subject of our study, and magnetic ones have many commonalities. Both are 
described phenomenologically by a vector order parameter (in magnetic systems the vector magnetisation m, and 
in liquid crystals the director n, a unit vector without head-tail distinction, that allows the existence of additional 
topologically distinct structures). The chirality in both systems manifests itself in the Lifshitz invariant of the form 
n⋅∇ × n (and the same with m for magnetic systems) in the free energy that stabilises Skyrmions17,18. Our study 
concerns a hexagonal lattice of half-Skyrmions in which the order parameter n(x, y) in the two-dimensional plane 
(x, y) rotates by π/2 from the Skyrmion centre to its perimeter, and the the Skyrmion number 

∫π= ⋅ ∂ ∂ × ∂ ∂n n nN dxdy x y(1/4 ) ( / / ) is ±1/2 (the sign of a Skyrmion number is meaningless in the case of a 
liquid crystal because of the head-tail symmetry). We have shown12,16 that a chiral liquid crystal whose helical 
pitch is a few hundred nanometers can exhibit a hexagonal lattice of half-Skyrmions, each surrounded by six 
topological defects of winding number −1/2. When only the orientational order at the perimeter is concerned, a 
half-Skyrmion can be regarded as an entity with winding number +1 that can be compensated by −1/2 defects 
twice as many as half-Skyrmions. Because half-integer defects are allowed only for vectorial order parameter 
without head-tail distinction, our half-Skyrmion lattice does not have an exact magnetic counterpart. Instead, 
magnetic half-Skyrmions form a square lattice with −1 defects in between19,24, or a hexagonal lattice where each 
half-Skyrmion is surrounded by six topological charges with winding number −1 and three smaller triangular 
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regions with the magnetisation opposite to that of the half-Skyrmion centre25. Half-Skyrmions in a ferromagnet 
have been also shown to arise in a precursor state22.

Identification of the formation of Skyrmions is highly important in the experimental studies of Skyrmions, 
and it has been carried out in many different ways depending on the system studied. Direct real-space observation 
of ferromagnetic Skyrmions by Lorentz transmission electron microscopy23 ignited the field of “Skyrmionics,” 
and real-space identification of half-Skyrmions in a chiral liquid crystal was realised by conventional, although 
with high numerical apertures, optical microscopy16. However, the first identification of ferromagnetic Skyrmions 
was by neutron scattering20 (together with the measurement of the Hall effect for which Skyrmions are responsi-
ble)21 to demonstrate that they form a hexagonal lattice. The identification of Skyrmions as many different ways as 
possible can corroborate their formation in a more convincing manner, and enables the investigation of various 
aspects of their structural and dynamical properties.

Here we demonstrate that the formation of a hexagonal lattice of half-Skyrmions in a thin film of a chiral 
liquid crystal, previously identified by optical microscopy, is confirmed also by Kossel diagrams using visible 
light. Kossel diagrams or Kossel lines visualise the directions of strong reflections or diffractions of incident mon-
ochromatic wave (visible light, X-ray, electrons etc.)29. Kossel lines, also referred to as Kikuchi lines for electron 
microscopy30, provide information on the symmetry of bulk crystals, and have been applied to the identifica-
tion of not only solid crystals but also soft matter systems including crystallised colloidal suspensions31–33. Note 
that Kossel diagrams played a decisive role in the investigation of the symmetry and the structural changes of 
then-mysterious cholesteric blue phases of a chiral liquid crystal34,35. Kossel diagrams are commonly used for bulk 
crystals and then Bragg reflections are responsible for Kossel lines. We show that Kossel lines are observed also 
for our thin system where Kossel lines cannot be simply attributed to Bragg reflections, and that the Kossel lines 
should be attributed to the dispersion modes that are present only in finite systems with surfaces.

Results
Experimental Kossel diagrams.  As in our previous work16, we studied a wedge cell of a chiral liquid crys-
tal exhibiting a stable cubic blue phase known as BP I whose lattice constant is a 360 nm (Fig. 1(a). See Methods 
for more details). We demonstrated the formation of a hexagonal lattice of half-Skyrmions in a thin region (thick-
ness 250–260 nm, referred to as “Region 1” in ref.16), and a structure resembling a thin slice of the cubic lattice 
of BP I (“Region 2” neighbouring Region 1, with thickness between 250–260 nm and 430 nm). In the present 
study, in addition to Regions 1 and 2, we also investigate “Region 3” with thickness between 430 nm and 560
–570 nm adjacent to Region 2.

For a single domain from the Regions, we studied the Kossel diagrams visualising the directions of strongly 
reflected light when the sample is illuminated by monochromatic light from a range of incident directions35. 
Experimentally obtained Kossel diagrams for Regions 1, 2 and 3 are shown in Fig. 1(b–d). The wavelength of the 
incident light was λ = 514.5 nm (See Methods). One can clearly see the six-fold symmetry in the Kossel diagram 
in Fig. 1(b) for Region 1. The six-fold symmetry of the Kossel diagram is consistent with the hexagonal symmetry 
of the half-Skyrmion lattice we identified earlier16. We also find a pronounced difference between the Kossel dia-
grams for Regions 2 and 3 (Fig. 1(c,d)) and those for the bulk BP I (See Supplementary Fig. 1(d) of ref.16); Kossel 
lines of the former are circular arcs as we will see below, while those of the latter contain ellipses.

Numerical calculations.  In our previous study16, we carried out numerical calculations of the orientational 
order of the liquid crystal to show that a hexagonal lattice of half-Skyrmions (Fig. 2(a,b)) and a structure resem-
bling a bulk BP I sliced by two [110] planes (Fig. 2(c,d)) are formed in Regions 1 and 2, respectively. These struc-
tures accommodate topological line defects of orientational order, or disclination lines, as bulk cholesteric blue 
phases do. Further calculations (See Supplementary Methods for details) revealed that a thicker slab of cholesteric 
blue phase I sliced by the same [110] planes is stable at larger thicknesses (Fig. 2(e,f)). A calculated phase diagram 
is presented in Supplementary Fig. 1(a), and see Supplementary Fig. 1(b) for another similar stable structure 
resembling bulk BP I sliced by the same planes. Although bulk BP I liquid crystals sandwiched by two untreated 
glass plates are known to exhibit polydomain textures, [110] orientation of the cubic lattice is one of the com-
monly observed orientations36–38.

The typical lattice spacing of half-Skyrmions is 275 nm (ref.16), of the order of or smaller than the wavelength 
in the liquid crystal medium (its average refractive index is .1 6). Therefore, to discuss the optical properties of 
our half-Skyrmion lattice and other structures, geometrical optics is totally useless, and we have to solve the full 
Maxwell equations for light waves. See ref.39 for technical details of the calculation, and the ratio of λ to the natu-
ral pitch of the helical orientational order p (approximately equal to a, the lattice constant of BP I) was chosen to 
be equal to that of the experiments (=514.5 nm/360 nm). In Fig. 1(e–g), we show the Kossel diagrams numeri-
cally calculated as such for the orientation profiles in Fig. 2. Most of the qualitative features found in the experi-
mental Kossel diagrams are successfully reproduced in the numerically calculated ones, including the hexagonal 
nature of the Kossel diagrams for a thin system corresponding to Region 1 (Fig. 1(b,e)), the strong intensity dif-
ference of the Kossel lines for Regions 2 and 3 (Fig. 1(c,f) and Fig. 1(d,g) respectively), higher intensity of the 
Kossel lines for Regions 2 and 3 than for Region 1, the presence of faint filled areas inside the sharp Kossel lines, 
and the circular shape of the Kossel lines. The close similarity between the experimental and the numerically 
calculated Kossel diagrams, along with our earlier real-space observations16, supports the correspondence 
between the structures found in the experiments and those obtained in the numerical calculations (Fig. 2).

Theoretical interpretation of the Kossel lines.  Kossel technique is commonly used for the identifica-
tion of the structure of bulk crystals, in which case Bragg reflections are responsible for Kossel lines. In our case 
of a thin system without a well-defined 3D lattice, however, Kossel lines cannot be attributable to Bragg reflec-
tions. We also note that Kossel lines of circular arc cannot be accounted for by Bragg reflections because a naive 
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construction of a Kossel diagram of a 2D hexagonal lattice structure based on the projection of “Kossel cones”32 
would result in six straight lines forming a hexagon, which obviously contradicts our circular Kossel diagram.

Here we show that Kossel lines for a thin system arise from guided-mode resonances and interactions between 
different modes through the periodic medium, known to be responsible for Wood anomalies in diffraction grat-
ings40,41. We follow the discussion in ref.41 on the guided-mode resonances in a planar diffraction grating, and 
consider a slab of thickness L with weak spatial modulation of the dielectric tensor αβ  along the in-plane direc-
tion. The dielectric constant of the surrounding medium is set to 1, and the average of αβ inside the slab is 
assumed to be 2δαβ, where 2  > 1.

We let kp denote the wavenumber of the guided wave along the in-plane direction of the slab, and ω=k c/1 1  
the wavenumber of light in the surrounding medium (ω is the angular frequency and c is the speed of light in 
vacuum). For the sake of brevity in the following, we define κ ≡ −k k( / ) p2 1 1

2 2   and γ = −k kp
2

1
2 . In the limit 

of vanishing spatial modulation of αβ  inside the slab, kp must satisfy42
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k
k

1
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(that is, κ > 0 and γ ≥ 0), and

Figure 1.  Kossel diagrams. (a) Colour image of the texture of a wedge cell under a polarising microscope. 
The directions of the polariser (P) and the analyser (A) are depicted by arrows. Cell thickness is smaller to the 
left. Scale bar: 50 μm. Reproduced from ref.16. (b–d) Experimentally obtained Kossel diagrams for “Region 
1”, “Region 2” and “Region 3”, respectively, at 514.5 nm. Central bright spots, not present in the following 
numerically calculated Kossel diagrams, are artifacts that arise due to parasitic reflections from glass–liquid 
crystal and glass–immersion oil interfaces along the sample normal. (e–g) Numerically calculated Kossel 
diagrams for the structures shown in Fig. 2(a,b), Fig. 2(c,d) and Fig. 2(e,f), respectively. The ratio λ/p is taken 
equal to that of the experiments.
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for a guided wave mode to exist. In our theoretical case (See Supplementary Methods), 1  = 2.25, 2  = 2.571, and 
π λ= = .k p2 / 6 597/1 1 . We denote kp for TE mode and TM mode by kp

TE and kp
TM, respectively, and Table 1 

summarises kp
TE and kp

TM (in units of p−1) calculated from eqs. (1) and (2) for systems with different L shown in 
Fig. 2. Note that there are two solutions for kp

TM when L/p = 1.273.
Let ki and ki⊥ denote the wavevector of the incident light and its in-plane component, respectively (Fig. 3(a)), 

and |ki⊥| < |ki| sinθNA, where θNA is determined by the numerical aperture of the objective lens NA so that 
 θ = NAsin NA1 . When the in-plane structure of the liquid crystal is characterised by the 2D reciprocal lattice 

vector ⊥G m n( , ) labelled by two integers (m, n), the in-plane component of the wavevector of the reflected light is, 
because of the Bloch theorem, + ≡⊥ ⊥ ⊥k G ki

m n m n( , ) ( , ) (See Fig. 3(a)). Kossel lines represent ⊥k m n( , ) of the reflected 
light with strong reflectivity32, and ⊥k m n( , )  must be smaller than |ki| sinθNA, because in the experimental setup the 
same objective lens collects the reflected light.

Note that = =⊥ ⊥k kk ( )p i
(0,0)  cannot satisfy eq. (1) because |ki⊥| < |ki| sinθNA < |ki| = k1, which implies the ina-

bility for the incident wave to excite the guided mode in an unmodulated slab42. However, the periodic modulation 
of αβ in the slab gives rise to the interaction between modes with different (m, n), and there exists (m0, n0) that sat-
isfies + = =⊥ ⊥ ⊥k G k k( )m n m n

pi
( , ) ( , )0 0 0 0  (here kp is the solution to eq. (2)) for a given continuous set of ki⊥. This set of 

| |⊥k m n( , )0 0 , in-plane wavevector of the excited guided mode, is a part of a circle (or an arc) of radius kp inside another 
circle θ| − | =| | < | |⊥ ⊥ ⊥k G k k( ) sinm n m n

i i NA
( , ) ( , )0 0 0 0  (Fig. 3(b)). This excited mode with the in-plane wavenumber being 

⊥k m n( , )0 0  couples to different modes with = + = +⊥
+∆ +∆

⊥ ⊥
∆ ∆

⊥ ⊥
+∆ +∆k k G k Gm m n n m n m n

i
m m n n( , ) ( , ) ( , ) ( , )0 0 0 0 0 0  that can 

contribute to reflection propagating outside the slab when | | < | |⊥
+∆ +∆k km m n n

i
( , )0 0 . Obviously, ⊥

+∆ +∆k m m n n( , )0 0  com-
prises an arc of | |⊥k m n( , )0 0  shifted by ⊥

Δ ΔG m n( , ), and this arc can be interpreted also as an arc of radius kp with its centre 
being at ⊥

∆ ∆G m n( , ) (Fig. 3(c)). When + =⊥ ⊥
∆ ∆G G 0m n m n( , ) ( , )0 0  as in the left of Fig. 3(b,c), the arc is simply translated. 

Otherwise, only a part of the arc remains because | |⊥
+∆ +∆k m m n n( , )0 0  must be smaller than |ki| sinθNA as mentioned 

above (See the right of Fig. 3(b,c)). From different sets of (m0, n0) and (Δm, Δn), one can thus construct a set of arcs 
whose centres are located on a hexagonal reciprocal lattice in the case of a half-Skyrmion lattice (Fig. 1(b,e)), or on a 
centred-rectangular reciprocal lattice in the case of structures similar to sliced BP I (Fig. 1(c,f) and Fig. 1(d,g)).

Figure 2.  Numerically calculated real-space profiles of liquid crystals. (a,b) Profile of a hexagonal half-
Skyrmion lattice in a cell of thickness L = 0.557p, where p is the natural pitch of the helical orientational 
order. (c,d) Structure similar to a sliced BP I containing one in-plane array of parallel disclination lines in a 
cell of thickness L = 0.955p. (e,f) Structure similar to a sliced BP I containing two in-plane arrays of parallel 
disclination lines in a cell of thickness L = 1.273p. Thick red lines are disclination lines. In the top views in (a,c,e) 
the orientational order at the midplane are represented by short rods whose colouring is such that it is blue 
(magenta) when the orientational order is parallel (perpendicular) to the cell. (b,d,f) Present the perspective 
view with the orientation profile at some vertical plane.

L/p kp
TE p kp

TM p

Fig. 2(a,b) 0.557 6.737 6.719

Fig. 2(c,d) 0.955 6.842 6.826

Fig. 2(e,f) 1.273 6.897 6.597 and 6.884

Table 1.  Wavenumber of the guided modes for systems with different thickness.
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The faint filled areas inside the sharp Kossel lines found both in the experimental and numerical Kossel dia-
grams are simply understood as a part of a filled circle whose radius is |ki| sinθNA and centre is at G(m,n): As shown 
in the previous discussion the in-plane component of the wavevector of the reflected light (whatever the reflectiv-
ity) is +⊥ ⊥k G m n

i
( , ), and ki⊥ is distributed within a circle of radius |ki| sinθNA. In the right panel of Fig. 3(c), the 

overlap of two dotted circles of radius |ki| sinθNA, with the centre of the left being at ⊥G m n( , ), corresponds to the faint 
filled area.

In Fig. 4(a–c), we superimpose the Kossel lines (red) and the edges of faint filled areas (cyan) obtained analyt-
ically in the above-mentioned manner, onto the numerically calculated ones (Fig. 1(e–g)). Note that two Kossel 
lines with different radii, kp

TE and kp
TM, are indistinguishable in Fig. 4(a,b). Double Kossel lines in Fig. 4(c) arise 

from the presence of two solutions for kp
TM, although the intensity of one Kossel line is much smaller than that 

of the other in the numerical calculation (Fig. 1(g)), and double lines are hardly visible in the experimental one 
(Fig. 1(d)). Their locations agree perfectly with those of numerically calculated ones, which is surprising consid-
ering the fact that the above theoretical argument deals with a limiting case of weak spatial modulation of the 
structures.

The deviation from the above picture can be found at the intersections of two different Kossel lines; the shape 
of Kossel lines at an intersection is not a simple superposition of two circular arcs, and the intensities of Kossel 
lines emanating from the intersection are not continuous. These features are, in closer inspection, found also in 
experimental Kossel diagrams (See, for example, the intersection of two bright Kossel lines in Fig. 1(c)). Several 
previous studies43–45 attributed such non-trivial features of Kossel lines at the intersections to many-wave scatter-
ing, and in our cases as well, many-wave scattering is likely to be responsible for the fine structures of Kossel lines. 

(b)

(a)

Liquid Crystal

Incident
light

Reflected
light

Transmitted
light

(c)

radius:

Figure 3.  Illustration of the theoretical argument on Kossel diagrams. (a) Schematic illustration of the 
geometry of the system and relevant wavevectors. (b,c) Illustration explaining how a Kossel line becomes a 
circular arc (See text). In the left, + =⊥ ⊥

Δ ΔGG 0m n m n( , ) ( , )0 0  and in the right, + ≠⊥ ⊥
Δ ΔG G 0m n m n( , ) ( , )0 0 . The overlap 

of two dotted circles in the right panel of (c) corresponds to a faint filled area.
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The above theoretical argument can account for only the location of Kossel lines, not their intensities that depend 
of the detailed structure of the liquid crystal slab. Almost perfect six-fold symmetry in the experimental and 
numerical Kossel diagrams (Fig. 1(b,e)) clearly reflect the six-fold symmetry of the half-Skyrmion lattice. Less 
symmetry in the structures of sliced BP I (Fig. 2(c–f)) gives rise to the asymmetry in the intensities of Kossel lines 
(Fig. 1(c,d,f,g)). The discontinuity in the intensity of a Kossel line at the edge of a faint filled area, observed both 
in experimental and numerical ones (clearly seen in Fig. 1(c,d,f,g)), is attributed to the formation of partial arcs 
when + ≠⊥ ⊥

Δ ΔG G 0m n m n( , ) ( , )0 0  (See also the right panel of Fig. 3(c)).

Discussion
Liquid crystals have been extensively studied as model systems that allow the investigation of structures that are 
predicted but inaccessible experimentally in other systems (one notable example is the realisation of Kibble-Zurek 
mechanism in a nematic liquid crystal)46,47. Our thin film of a chiral liquid crystal also serves as a model sys-
tem enabling studies of topological entities including half-Skyrmions by various optical means that cannot be 
exploited for other systems embedding Skyrmions. We therefore believe that further optical investigation of liq-
uid crystalline Skyrmions will shed new light on the structures and possible functions of Skyrmions in the optical 
regime.

As we have seen, Kossel diagrams visualise the wavevector of the modes that can be excited by incident light. 
Therefore Kossel lines can be regarded as the manifestation of the dispersion eigenmodes of the medium43, 
and Bragg reflections are typical examples of such eigenmodes. The same applies to angle-resolved pho-
toemission spectroscopy (ARPES) that probes the band structures of the surface of a solid, or of an effectively 
two-dimensional material48,49. Just as ARPES played a substantial role in the discovery of three-dimensional top-
ological insulators50–52, the Kossel technique could be used to investigate the dispersion properties of thin systems 
that exhibit non-trivial band structures such as topologically protected exotic surface states in the optical regime. 
As we have demonstrated, our Kossel lines are attributable solely to guided mode resonances that can be present 
only in systems with surfaces with outer space. Hence, dispersion modes that exist only in the presence of surfaces 
can be detected by the Kossel technique, and the Kossel technique could serve as additional tools for the investi-
gation of topological photonic materials.

Methods
Material.  The liquid crystal material is the same as that used in our previous study16: a mixture of a nematic 
liquid crystal ZhK-1289 (NIOPIC) and a chiral dopant CB15 (Merck) at 1:0.65 weight ratio. Its phase sequence is 
N* →

26 C
 BP I  →

. 28 5 C
 I (Here N* and I stand for a cholesteric phase and an isotropic phase, respectively), and the 

lattice constant of BP I of this mixture is 360 nm.

Experimental cells.  How the liquid crystal cells were prepared is also the same as that in our previous 
study16. 25 × 25 mm clean cover glass plates of 150 μm thickness with planar degenerate surface alignment were 
used. Thin wedge cells were prepared on a hot plate at 50 °C by placing a small amount of diluted water suspension 
of 2 μm particles as a cell spacer along one edge of the bottom substrate. Then a tiny (0.1–0.5 l) drop of the BP 
material was placed onto the substrate. The drop was covered with the second plate and the plates were pressed 
against each other until the liquid crystal material spread and covered the whole cell area. After that, the cell was 
placed into a programmable hot stage for fast cooling to temperature ~1–2 K above the BP I–I transition and 
subsequent slow (~0.01 K/min) cooling into BP I phase.

Microscopic observations.  We used an inverted polarising microscope (Ti-U, Nikon) with ×100 oil 
immersion objective (NA = 1.4), Nikon DS-Fi1 digital camera (pixel size 3.4 × 3.4 μm). Kossel diagrams were 
recorded in conoscopic observation mode from a single domain with fully open illumination aperture diaphragm 
and fully closed eld diaphragm. Interference filters at 514.5 nm with 5 nm transmission bandwidth were used for 
wavelength selection. Due to low intensity of the reflected light and narrow filter bandwidth exposure times were 
from 4 to 30 seconds depending on wavelength and sample region.

Figure 4.  Comparison between numerically calculated and analytically obtained Kossel diagrams. (a–c) 
Analytically obtained Kossel lines (red) and edges of faint filled area (cyan) are superimposed onto numerically 
calculated ones Fig. 1(e–g), respectively.
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Numerical calculations.  The orientation profiles presented in Fig. 2 were calculated by minimising the 
free energy functional of the liquid crystal in terms a second-rank tensor χαβ describing the orientational order. 
We used the same calculation code as used in our previous studies12,53 to find the equilibrium profiles of χαβ 
and their lattice constants that minimise the total free energy per unit area along the xy plane in which periodic 
boundary conditions are imposed. Further details can be found in Supplementary Methods. The calculations of 
the Kossel diagrams were carried out by solving the Maxwell equations for the electric field using plane-wave 
expansion along the in-plane direction and finite-difference discretisation along the normal direction of the cell. 
The reflected waves were calculated for different wavevectors of incident light, and Kossel diagrams plotted the 
intensities of reflected light with different wavevectors. Further technical details can be found in ref.39.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
authors on reasonable request.
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